

# MAY 1 5 2000 WATER QUALITY PROGRAM

# State of Washington **DEPARTMENT OF FISH AND WILDLIFE**

Mailing Address: 600 Capitol Way N Olympia, WA 98501-1091 (360) 902-2222, TDD (360) 902-2207 Main Office Location: Natural Resources Building 1111 Washington Street SE Olympia, WA

May 15, 2009

Jonathan Jennings Aquatic Pesticide Program Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600 NPDES Permit WA0041009 Annual Report

Dear Mr. Jennings:

Enclosed are Washington Department of Fish and Wildlife's Post-Treatment Discharge Monitoring Reports for Byron Ponds (Yakima County) treated with rotenone in March 2008; Cee-Gee-Ah-Greek (Pend Oreille County); the North Potholes Northern Leopard Frog enhancement project and North Potholes—Westlake Ponds Desert Lakes TD2 project (Grant County); Frater Lake (Pend Oreille County); Ellen Lake (Ferry County); Hatch, Little Hatch and Williams lakes (Stevens County) treated with rotenone in the fall of 2008. All other pertinent documentation as mandated by the reporting requirement under S3.A of NPDES Waste Discharge Individual Permit Number WA0041009 is included.

The treatment of Worth Lake (Franklin County), initially identified for treatment in the fall of 2008, was deferred until a later time due to logistical constraints. The treatments of several lakes in Grant County; the Canal chain-of-lakes (Heart, June, Windmill, North Windmill, North Windmill, and Canal Lakes), and the Desert Wildlife Area chain-of-lakes (Beda Lake, Brookies Lake, Aztec Lake, Desert Lake, North Desert Lake, Dune Lake, Harris Lake, Lizard Lake, Meadowlark Lake, Sedge Lake, Tern Lake), in Franklin County (Powerline Lake), and in Okanogan County (Franchers Dam Pond) were deferred from consideration until 2009, due to logistical and staffing concerns. Likewise, alternate waters identified in Grant County (Lenice, Merry and Nunnally Lakes, and the Caliche lakes) were not treated.

Keogh Lake in Stevens County was not treated, as this water body was not connected to Hatch Lake and rehabilitation was unnecessary to achieve management goals. West Medical and Fish lakes in Spokane County were identified as candidates for treatment, but game fish survival and angling success were sufficiently robust in 2008 that these waters were dropped from final consideration. Big Buck Lake in Okanogan County suffered winter kill during the winter of 2007-08, and treatment with rotenone was unnecessary in 2008.

SOURCE SAN

OUROGE NO CASTMANACE C

Also enclosed is a copy of the amended FSEIS for the lakes proposed for treatment in the fall of 2008 and spring of 2009, including all SEPA comments, results and decisions, as well as the 2008-2009 Lake and Stream Rehabilitation Proposal list.

Please feel free to contact me at 360-902-2711 or email <a href="mailto:anderjda@dfw.wa.gov">anderjda@dfw.wa.gov</a> with any questions.

Sincerely,

Jon. Anderson

Resident Native Fisheries Manager

**Enclosures** 

cc: Jim Uehara, WDFW Olympia

I certify under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

# POST-TREATMENT DISCHARGE MONITORING REPORTS

DEPARTMENT OF EGOLOGY

WATER QUALITY PHOGRAM

# YAKIMA COUNTY BYRON PONDS

PEND OREILLE COUNTY

CEE-CEE-AH CREEK

# **GRANT COUNTY**

NORTH POTHOLES – NORTHERN LEOPARD FROG PROJECT NORTH POTHOLES – DESERT LAKES TD2 PONDS

# PEND OREILLE COUNTY

FRATER LAKE

# **FERRY COUNTY**

**ELLEN LAKE** 

# STEVENS COUNTY

HATCH LAKE LITTLE HATCH LAKE WILLIAMS LAKE

# **OKANOGAN COUNTY**

STARZMAN LAKES

COROLL ROTHSHIPTING

Solish Sent Station at Sent To Mills of 1 Tags

#### POST-REHABILITATION REPORT

# **Byron Ponds**

WATER: Byron Ponds Management Unit, Sunnyside Wildlife Area

LOCATION: Yakima Co.; Sections 10, 11, & 12, T8N, R23E, consisting of the inlet canal west of Bus Road, all the way to the new control structure near the eastern portion of the management unit.

DATE(S) TREATED: March 5-6, 2008

**PURPOSE:** Improve waterfowl nesting and rearing success through the reduction in numbers of undesirable species of fish, primarily carp, to the extent possible.

**LICENSED APPLICATOR:** Jeffrey W Korth, WA Dept Fish and Wildlife (DFW), District 5 Fisheries Biologist, Pesticide License # 39429.

LAKE DESCRIPTION @ time of treatment; water level approximately 1-2 ft below high water:

Surface acres: 84

Depth: average 0.5-1.5; maximum 5 ft

Volume: 81 acre-feet

Weight of Water: 220,169,664 lbs

Connectivity: A lift pump on adjacent private land pumps groundwater into the system 24/7, year around. A small amount of irrigation tailwater from rill-irrigated fields enters the drainage after being filtered through substantial vegetation. The outlet has a water control structure at which outflow can be stopped. Released outflow enters a drainage ditch with 0.5 to 0.8 cfs flow (May/June 2007) for about 3 miles before falling over a basalt cliff and entering the Yakima River.

## TREATMENT DESCRIPTION:

Toxicant used: Rotenone - Liquid CFT Legumine EPA Reg # 75338-2; 5% equivalent; 108 gal. Total Concentration Applied: 4 ppm

Rotenone concentrations achieved during the treatment were calculated without regard to daily rates of degradation or dilution. Precise rates of detoxification on a daily basis were not known. Only enough rotenone was used during the entire treatment to achieve the desired concentrations given an instantaneous treatment (4 ppm product, 0.20 ppm actual rotenone for all lakes). Actual concentrations in the lakes would have been somewhat less since rotenone began degrading on the first day of treatment and inflow provided constant dilution.

Methods: All liquid sprayed by helicopter, ATV, by hand using a spray tank, and small boat.

**Detoxification Procedures:** treated waters naturally detoxified. No outflow detoxification was necessary; all outflow from system was contained.

#### PHYSICAL CHARACTERISTICS OF THE LAKE DURING TREATMENT:

Weather - Sunny, 5 mph W/SW wind, air temp = 40's  $^{\circ}$ F.

Pre-treatment water quality parameters -

Depth (m) Water Temp (°C) Dissolved Oxygen pH

(mg/l)

Surface 2.33 10.4 8.11

#### SPECIES ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

- 1) Carp (thousands, mostly 6 to 12 inches, with a only a few at 24 inches);
- 2) Pumpkinseed (thousands, primarily 1-3 inches);
- 3) Bullheads (less than a hundred spotted, primarily 2-4").

**PRE- AND POST- TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009:

Impact to non-targeted organisms – Zooplankton were sampled at Byron Ponds for diversity and abundance just previous to treatment, and will again be sampled six months and 12 months post treatment. Samples are currently being processed, and the results will be available by separate report. Liquid rotenone formulation longevity – Water samples were taken at Byron Ponds 24 hours and four weeks post treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Water samples were taken in areas of the lake where the heaviest concentrations of liquid rotenone were applied or might accumulate. Samples were sent to an accredited lab for analyses per EPA methods. Samples were analyzed for 64 volatile and semi-volatile organic compounds, including benzene, tolulene, phenol, xylene, and derivatives of these compounds, and detection limits were 0.02-3.0 ug/l, variously. In both the 24 hr and the 4-week sample, the amounts of all 64 compounds possibly present in liquid rotenone formulations were below detection limits.

**Period of Toxicity** – Persistent rotenone toxicity was determined by bioassay. Live trout were held in a live-box (5 gal volume with free flow-through) in the water monitored. Trout exhibit signs of stress and loose equilibrium after three hours at rotenone concentrations of 0.05 ppm product (0.0025 ppm actual rotenone) at water temperatures of 47° F, and response is fairly uniform among individuals in similar circumstances. Rotenone is considered below detection limits when trout remain alive for at least 48 hours. Individual mortalities within a group of trout frequently occur due to mechanical damage when handled or transported/confined in relatively small containers.

Bioassay began 12 days post-treatment in two locations. Eight rainbow were placed in a live-box at the inlet and 15 rainbow were placed at the outlet of Byron Ponds. No sign of distress was observed after 30 minutes in the water. After 48 hours in the water, two of the eight trout at the inlet had perished and one of the 15 trout at the outlet had perished. Rotenone toxicity was determined to be below detection limits, and the three trout mortalities were determined to be due to other factors (mechanical damage during transport or captivity).

#### **DESCRIPTION OF TREATMENT AND OTHER COMMENTS:**

The spring 2008 treatment of the Byron Ponds was accomplished entirely with liquid rotenone. A new water control structure was installed to replace the original one built in the 1940's. Prior to treatment, the entire unit was drained as low as possible to minimize water volume. Dense areas of emergent vegetation were burned to expose any standing water for more thorough contact by rotenone. Much of the area, which is typically inundated, was dry and all remaining water was very shallow. A helicopter was used to spray 90 gallons over all open water on the first day of treatment, including the ponds to the north. Another 18 gallons were applied by other means from ground level. An ATV was used to treat the incoming canal after the helicopter application. A backpack sprayer was used to treat a small amount of water from a natural spring, although that water was currently blocked from the main treatment area by a beaver dam. On the second day, an ATV spray tank, mounted in a small boat, was used to treat a small lobe of the main pond area that we suspected might have been missed by the helicopter. By the third day, no live fish were observed.

Cost: About 13 man-days (man-day = 8 hrs) were required to complete the treatment of Byron Ponds from pre-treatment preparation (signing, sampling, rotenone and equipment transport) through treatment, clean up, and travel. Total cost of the treatment alone (rotenone, labor - \$268/day, travel, expendable equipment) was approximately \$15,000, including about \$2,400 for labor during the treatment, \$8,316 for rotenone (liquid @ \$77/gal), and \$3,231 for the helicopter application. Estimated time for pre-rehabilitation proposals, general public outreach, post-rehabilitation sampling and reports added about 6 days.

Restocking the area with bass and bluegill is planned, but has not yet occurred.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | •          |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|------------|-----|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | • |            |     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | •          |     |     |
| *.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | V Comments |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | • |            | •   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | ,   |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | •   |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ** *********************************** |   |            | *   |     |
| · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | 4   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
| * ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | •   | *   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | •          |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
| All the second s |                                        | • |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ************************************** |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | • | .3         | 1   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                      | • |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | •   |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | •   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | •          |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | •          | •   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | N . |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     | _   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   | •          | •   | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | • |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . *                                    |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                      |   |            |     | . • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · •                                    |   |            | •   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | •   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     | •   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | • |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            | •   |     |

# ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

ESN Job Number: Client: Client Job Name: Client Job Number:

S80312.3 Washington Department of Fish and Wildlife Byron Ponds

Analytical Results

| 8260, μg/L                  |           | MTH BLK  |          | Byron Ponds | MS       | MSD       | RP |
|-----------------------------|-----------|----------|----------|-------------|----------|-----------|----|
| Matrix                      | Water     | Water    | Water    | Water       | Water    | Water     |    |
| Sample Collected            | Reporting | 02/42/00 | 00/40/00 | 03/07/08    | 02/42/08 | 03/13/08  |    |
| Date analyzed               | Limits    | 03/13/08 | 03/13/08 | 03/13/08    | 03/13/08 | VOI 13/00 |    |
| Dichlorodifluoromethane     | 1.0       | nd       |          | nd          |          |           |    |
| Chloromethane               | 1.0       | nd       |          | nd          |          | •         |    |
| Vinyl chloride              | 0.2       | . nd     |          | nd          |          |           |    |
| Bromomethane                | 1.0       | nd       |          | nd          |          |           |    |
| Chloroethane                | 1.0       | nd       |          | nd          |          |           |    |
| Trichlorofluoromethane      | 1.0       | nd       |          | nd          |          |           |    |
| Acetone                     | 10.0      | nd       |          | nd          |          |           |    |
| 1,1-Dichloroethene          | 1.0       | nd       | 108%     | nd          | 110%     | 108%      | 2  |
| Methylene chloride          | 10.0      | nd       |          | nd          |          |           |    |
| Methyl-t-butyl ether (MTBE) | 1.0       | nd       |          | nd          |          |           |    |
| trans-1,2-Dichloroethene    | 1.0       | nd       |          | nd          |          |           |    |
| 1.1-Dichloroethane          | 1.0       | nd       |          | nd          |          |           |    |
| n-Hexane                    | 1.0       | nd       |          | nd          |          |           |    |
| 2-Butanone (MEK)            | 10.0      | nd       |          | nd          |          |           |    |
| cis-1,2-Dichloroethene      | 1.0       | nd       |          | nd          |          |           |    |
| 2,2-Dichloropropane         | 1.0       | nd       |          | nd          |          |           |    |
| Chloroform                  | 1.0       | nd .     |          | nd          |          |           |    |
| Bromochloromethane          | 1.0       | nd       |          | nd .        |          |           |    |
| 1,1,1-Trichloroethane       | 1.0       | nd       |          | nd          |          |           |    |
| 1,2-Dichloroethane (EDC)    | 1.0       | nd       | •        | nd          |          |           |    |
| 1,1-Dichloropropene         | 1.0       | nd       |          | nd          |          |           |    |
| Carbon tetrachloride        | 1.0       | nd       |          | nd          |          |           |    |
| Benzene                     | 1.0       | nd       | 106%     | nd          | 107%     | 107%      | 0  |
| Trichloroethene (TCE)       | 1.0       | nd       | 107%     | nd          | 107%     | 106%      | 1' |
| 1,2-Dichloropropane         | 1.0       | nd       | 10170    | nd          | 10770    | 70070     | •  |
| Dibromomethane              | 1.0       | nd       |          | nd          |          |           |    |
| Bromodichloromethane        | 1.0       | nd       |          | nd          |          |           |    |
| 4-Methyl-2-pentanone (MIBK) | 1.0       | nd       |          | nd          |          |           |    |
| cis-1,3-Dichloropropene     | 1.0       | nd       |          | nd          |          | •         |    |
| Foluene                     | 1.0       | nd .     | 106%     | nd          | 109%     | 109%      | 0' |
| rans-1,3-Dichloropropene    | 1.0       | nd       | 10070    | nd          | 10370    | . 10370   |    |
| 1,1,2-Trichloroethane       | 1.0       | nd       |          | nd          |          |           |    |
| 2-Hexanone                  | 1.0       | nd       |          | nd          |          | •         |    |
| 1,3-Dichloropropane         | 1.0       | nd       |          | nd          |          |           |    |
|                             | 1.0       | , nd     |          | nd          |          |           |    |
| Dibromochloromethane        | 1.0       | nd .     |          | nd          |          |           |    |
| Fetrachloroethene (PCE)     | 0.10      | nd       |          | , nd        |          |           |    |
| I,2-Dibromoethane (EDB)     | 1.0       | nd       | 111%     | , nd        | 114%     | 111%      | 39 |
| Chlorobenzene               | 1.0       |          | 11170    | nd          | 1 14 70  | 11170     | 3  |
| I,1,1,2-Tetrachloroethane   |           | nd       |          |             |          |           |    |
| Ethylbenzene                | 1.0       | nd       |          | nd          |          |           |    |
| (ylenes                     | 1.0       | nd<br>1  |          | nd          |          |           |    |
| Styrene                     | 1.0       | nd       |          | nd          |          |           |    |
| Bromoform                   | 1.0       | nd       |          | nd          |          |           |    |
| ,1,2,2-Tetrachloroethane    | 1.0       | nd       |          | nd          |          |           |    |
| sopropylbenzene             | 1.0       | nd       |          | nd          |          | •         |    |
| ,2,3-Trichloropropane       | 1.0       | nd       |          | nd          |          |           |    |
| Bromobenzene                | 1.0       | . nd     |          | nd          |          |           |    |
| -Propylbenzene              | 1.0       | nd       |          | nd          |          |           |    |
| -Chlorotoluene              | 1.0       | nd       |          | nd          |          |           |    |
| -Chlorotoluene              | 1.0       | nd       |          | nd          |          |           |    |
| ,3,5-Trimethylbenzene       | 1.0       | nd       |          | nd          |          |           |    |
| ert-Butylbenzene            | 1.0       | nd       |          | nd          |          |           |    |
| ,2,4-Trimethylbenzene       | 1.0       | nd       |          | nd          |          |           |    |
| ec-Butylbenzene             | 1.0       | nd       |          | nd          |          |           |    |
| ,3-Dichlorobenzene          | 1.0       | nd       |          | . nd        |          |           |    |
| ,4-Dichlorobenzene          | 1.0       | nd       |          | nd          |          |           |    |
| sopropyltoluene             | 1.0       | nd       |          | nd          |          |           |    |
| ,2-Dichlorobenzene          | 1.0       | nd       |          | nd          |          |           |    |
| -Butylbenzene               | 1.0       | nd       |          | nd          |          |           |    |
| ,2-Dibromo-3-Chloropropane  | 1.0       | nd       |          | nd          |          |           |    |
| ,2,4-Trichlorobenzene       | 1.0       | nd       |          | nd          |          |           |    |
| laphthalene                 | 1.0       | nd       |          | nd          |          |           |    |
| lexachloro-1,3-butadiene    | 1.0       | nd       |          | nd          |          |           |    |
| ,2,3-Trichlorobenzene       | 1.0       | √ nd     |          | · nd        |          |           |    |

# ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

S80312.3

Washington Department of Fish and Wildlife Byron Ponds

ESN Job Number: Client: Client Job Name: Client Job Number:

Analytical Results

| 8260, μg/L            |           | MTH BLK  | LCS      | Byron Ponds | MS       | MSD      | RPD |
|-----------------------|-----------|----------|----------|-------------|----------|----------|-----|
| Matrix                | Water     | . Water  | Water    | Water -     | Water    | Water    |     |
| Sample Collected      | Reporting |          |          | 03/07/08    |          |          |     |
| Date analyzed         | Limits    | 03/13/08 | 03/13/08 | 03/13/08    | 03/13/08 | 03/13/08 |     |
| Surrogate recoveries: |           |          |          |             |          |          |     |
| Dibromofluoromethane  |           | 131%     | 127%     | 134%        | 125%     | 127%     |     |
| Toluene-d8            |           | 103%     | 103%     | 104%        | 103%     | 103%     |     |
| 4-Bromofluorobenzene  |           | 96%      | 96%      | 94%         | 96%      | 97%      |     |

Data Qualifiers and Analytical Comments
nd - not detected at listed reporting limits
J - estimated quantitation, below listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

S80312.3 Washington Department of Fish and Wildlife Byron Ponds

ESN Job Number: Client: Client Job Name: Client Job Number:

Analytical Results

| •                                                              |                    |            |              |                      |             |              |          |
|----------------------------------------------------------------|--------------------|------------|--------------|----------------------|-------------|--------------|----------|
| 8270, µg/L                                                     | 1Afeten            | MTH BLK    | LCS<br>Water | Byron Ponds<br>Water | MS<br>Water | MSD<br>Water | RPD      |
| Matrix Date extracted                                          | Water<br>Reporting | 03/12/08   | 03/12/08     | 03/12/08             | 03/12/08    | 03/12/08     |          |
| Date analyzed .                                                | Limits             | 03/12/08   | 03/12/08     | 03/12/08             | 03/12/08    | 03/12/08     |          |
| Sample collected                                               |                    |            |              | 03/07/08             |             |              |          |
| Pyridine                                                       | . 2.0              | nd         |              | · nd                 |             |              |          |
| Aniline                                                        | 2.0                | nd         |              | nd                   | 2001        | . ,          |          |
| Phenoi                                                         | 2.0                | nd         |              | nd                   | 88%         | 92%          | 4%<br>7% |
| 2-Chlorophenol                                                 | 2.0<br>2.0         | nd<br>nd   |              | , nd<br>nd           | 107%        | 100%         | 170      |
| Bis (2-chloroethyl) ether<br>1,3-Dichlorobenzene               | 2.0                | nd .       |              | . nd                 |             |              |          |
| 1,4-Dichlorobenzene                                            | 2.0                | nd .       | 118%         | nd                   | 103%        | 102%         | 1%       |
| 1,2-Dichlorobenzene                                            | 2.0                | nd         |              | nd                   |             |              |          |
| N-methylpyrrolidone                                            | . 2.0              | nd         |              | nd                   |             |              |          |
| Benzyl alcohol                                                 | 2.0                | nd.        |              | nd                   |             |              |          |
| 2-Methylphenol (o-cresol)                                      | 2.0                | nd         |              | nd<br>. nd           |             |              |          |
| Bis (2-chloroisopropyl) ether<br>3,4-Methylphenol (m,p-cresol) | 10.0<br>2.0        | nd nd      |              | nd .                 |             |              |          |
| Hexacholorethane                                               | 2.0                | nd         |              | nd                   |             |              |          |
| N-Nitroso-di-n-propylamine                                     | 2.0                | nd         |              | · nd                 | 111%        | 111%         | 0%       |
| Nitrobenzene                                                   | 2.0                | nd         |              | nd                   |             |              |          |
| Isophorone                                                     | 2.0                | nd         |              | nd                   |             |              |          |
| 2-Nitrophenol                                                  | 10.0               | nd         |              | nd                   |             |              |          |
| 4-Nitrophenol                                                  | 10.0<br>2.0        | nd .<br>nd |              | nd<br>nd             | 97%         | 98%          | 1%       |
| 2,4-Dimethylphenol Bis (2-chloroethoxy) methane                | 2.0                | nd         |              | nd                   |             | 5076         | 1 70     |
| 2,4-Dichlorophenol                                             | 10.0               | nd         |              | nd                   |             |              |          |
| 1,2,4-Trichlorobenzene                                         | 2.0                | nd         |              | nd                   | 120%        | 118%         | 2%       |
| Naphthalene                                                    | 2.0                | , nd       |              | nd                   |             |              |          |
| 4-Chloroaniline                                                | 10.0               | nd         |              | nd                   |             |              |          |
| Hexachlorobutadiene                                            | 2.0                | nd         | 109%         | nd                   | 700/        | 000/         | -0,      |
| 4-Chloro-3-methylphenol                                        | 10.0               | nd         |              | nd<br>nd             | 76%         | 80%          | 5%       |
| 2-Methylnapthalene<br>1-Methylnapthalene                       | 2.0<br>2.0         | nd<br>nd   |              | nd                   |             | •            |          |
| Hexachiorocyclopentadiene                                      | 2.0                | nd         |              | . nd                 |             |              |          |
| 2,4,6-Trichlorophenol                                          | 10.0               | nd         |              | nd                   |             |              | •        |
| 2,4,5-Trichlorophenol                                          | 10.0               | nd         |              | nd                   |             |              |          |
| 2-Chloronaphthalene                                            | 2.0                | nd         | •            | nd                   |             |              |          |
| 2-Nitroaniline                                                 | 10.0               | nd         |              | nd                   |             |              |          |
| 1,4-Dinitrobenzene                                             | 10.0<br>2.0        | nd         |              | nd<br>nd             |             |              |          |
| Dimethylphthalate<br>Acenaphthylene                            | 0.2                | nd<br>'nd  |              | nd                   |             |              |          |
| 1,3-Dinotrobenzene                                             | 10.0               | nd         |              | nd                   |             |              |          |
| 2,6-Dinitrotoluene                                             | 2.0                | nd         |              | nd                   |             |              |          |
| 1,2-Dinitrobenzene                                             | 2.0                | nd         |              | nd                   |             |              |          |
| Acenaphthene                                                   | 0.2                | nd         | 109%         | nd                   | 97%         | 96%          | 1%       |
| 3-Nitroaniline                                                 | 10.0               | nd         |              | nd                   |             |              |          |
| Dibenzofuran                                                   | 2.0<br>2.0         | nd<br>nd   |              | nd<br>nd             | 86%         | 86%          | 0%       |
| 2,4-Dinitrotoluene<br>2,3,4,6-Tetrachlorophenol                | 2.0                | nd         |              | nd                   | 0070        | 0076         | 070      |
| 2,3,5,6-Tetrachlorophenol                                      | 2.0                | nd         |              | nd                   |             |              |          |
| 2,4-Dinitrophenol                                              | 10.0               | nd         |              | nd                   |             |              |          |
| Fluorene                                                       | 0.2                | nd         |              | nd                   |             |              |          |
| 4-Chlorophenylphenylether                                      | 2.0                | nd         |              | nd                   |             |              |          |
| Diethylphthalate                                               | 2.0                | nd         |              | nd                   |             |              |          |
| 4-Nitroaniline                                                 | 10.0               | , nd .     |              | nd                   |             |              |          |
| 4,6-Dinitro-2-methylphenol                                     | 10.0<br>2.0        | nd<br>nd   | 106%         | nd<br>nd             |             |              |          |
| N-nitrosodiphenylamine<br>Azobenzene                           | 2.0                | nd         | 10070        | nd                   |             |              |          |
| 4-Bromophenylphenylelher                                       | 2.0                | nd         |              | nd                   |             |              |          |
| Hexachlorobenzene                                              | 2.0                | nd         |              | nd                   |             |              |          |
| Pentachlorophenol                                              | 10.0               | nd         |              | nd                   | 67%         | 70%          | 4%       |
| Phenanthrene                                                   | 0.2                | nd         |              | nd                   |             |              |          |
| Anthracene                                                     | 0.2                | · nd       |              | nd                   |             |              |          |
| Carbazole                                                      | 2.0                | nd         |              | nd -                 |             |              |          |
| Di-n-butylphthalate<br>Fluoranthene                            | 2.0<br>0.2         | nd .<br>nd | 117%         | nd<br>nd             |             |              |          |
| Pyrene                                                         | 0.2                | nd         | 11770        | nd                   | 94%         | 97%          | 3%       |
| Butylbenzylphthalate                                           | 2.0                | nd         |              | nd                   | J           |              | ,        |
| Bis(2-ethylhexyl) adipate                                      | 2.0                | nd         |              | nd                   |             |              |          |
| Benzo(a)anthracene                                             | 0.2                | nd         |              | nd                   |             |              |          |
| Chrysene                                                       | 0.2                | nd         |              | nd                   |             |              |          |
| Bis (2-ethylhexyl) phthalate                                   | 2.0                | nd         |              | nd                   |             |              |          |
| Di-n-octyl phthalate                                           | 2.0                | nd         | 87%          | nd nd                |             |              |          |
| Benzo(b)fluoranthene                                           | 0.2<br>0.2         | nd<br>nd   |              | nd<br>nd             |             |              |          |
| Benzo(k)fluoranthene<br>Benzo(a)pyrene                         | 0.2                | nd<br>nd   | 120%         | na<br>nd             |             |              |          |
| Benzo(a)pyrene<br>Dibenzo(a,h)anthracene                       | 0.2                | nd         | 12070        | nd                   |             |              |          |
| Benzo(ghi)perylene                                             | 0.2                | nd         |              | nd                   |             |              |          |
| Indeno(1,2,3-cd)pyrene                                         | 0.2                | nd         |              | nd                   |             |              |          |

ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S80312.3

Client:

Washington Department of Fish and Wildlife Byron Ponds

Client Job Name: Client Job Number:

Analytical Results

8270, µg/L Matrix Date extracted Date analyzed MTH BLK LCS Byron Ponds MS MSD Water 03/12/08 03/12/08 Water 03/12/08 03/12/08 Water 03/12/08 03/12/08 Water Water 03/12/08 03/12/08 03/12/08 03/12/08

Reporting Limits Sample collected

03/07/08 Surrogate recoveries
2-Fluorophenol 96% 117% 91% 86% 91% 85% Phenol-d6 Nitrobenzene-d5 94% 119% 125% 86% 97% 87% 105% 88% 88% 95% 83% 98% 2-Fluorobiphenyl 92% 106% 2,4,6-Tribromophenol 4-Terphenyl-d14 89% 108%

98%

RPD

88%

86%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 2-Fiurophenot: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

# ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

Client:

Washington Department of Fish and Wildlife Byron Ponds

Client Job Name:

Analytical Results

| Analytical Results                      |                         | 14711 51 16 | 1.00       | Decree Decrete | 1// 0      | MCD        | 222 |
|-----------------------------------------|-------------------------|-------------|------------|----------------|------------|------------|-----|
| 8260, μg/L                              | 101-4                   | MTH BLK     |            | Byron Ponds    | MS         | MSD        | RPD |
| Matrix<br>Semala Callested              | Water                   | , Water     | Water      | Water 04/01/08 | Water      | Water      |     |
| Sample Collected  Date analyzed         | Reporting<br>Limits     | 04/04/08    | 04/04/08   | 04/01/08       | 04/04/08   | 04/04/08   |     |
| Date analyzed                           | Limito                  | 0.110.1100  | 0 110 1100 | 0 170 1700     | 0 110 1100 | 0 .,0 ,,00 |     |
| Dichlorodifluoromethane                 | 1.0                     | nd          |            | nd             |            |            |     |
| Chloromethane                           | 1.0                     | nd          |            | , nd           |            |            |     |
| Vinyl chloride                          | 0.2                     | nd          |            | nd             |            | .*         |     |
| Bromomethane                            | 1.0                     | nd          |            | nd             |            | •          |     |
| Chloroethane .                          | 1.0                     | nd          |            | nd -           |            |            |     |
| Trichlorofluoromethane                  | 1.0                     | nd          |            | nd             |            |            |     |
| Acetone                                 | 10.0                    | nd          |            | nd             |            |            |     |
| 1,1-Dichloroethene                      | 1.0                     | nd          | 96%        | . nd           | 91%        | 95%        | 4%  |
| Methylene chloride                      | 10.0                    | nd          |            | nd             |            |            |     |
| Methyl-t-butyl ether (MTBE)             | 1.0                     | nd          |            | . nd           |            |            |     |
| trans-1,2-Dichloroethene                | 1.0                     | nd          |            | nd             |            |            |     |
| 1,1-Dichloroethane                      | 1.0 <sub>.</sub><br>1.0 | · nd<br>nd  |            | nd<br>nd       |            |            | -   |
| n-Hexane                                | 10.0                    | nd          |            | nd             |            |            |     |
| 2-Butanone (MEK) cis-1,2-Dichloroethene | 1.0                     | nd          |            | . nd           |            |            |     |
| 2,2-Dichloropropane                     | 1.0                     | nd          |            | nd             |            |            |     |
| Chloroform                              | 1.0                     | nd          |            | nd             |            |            |     |
| Bromochloromethane                      | 1.0                     | nd          |            | nd             |            |            |     |
| 1,1,1-Trichloroethane                   | 1.0                     | nd          |            | nd             | •          |            |     |
| 1,2-Dichloroethane (EDC)                | 1.0                     | nd          |            | · nd           |            |            |     |
| 1,1-Dichloropropene                     | 1.0                     | nd          | •          | nd             |            |            |     |
| Carbon tetrachloride                    | 1.0                     | nd          |            | nd             |            |            |     |
| Benzene                                 | 1.0                     | nd          | 104%       | nd             | 104%       | 98%        | 6%  |
| Trichloroethene (TCE)                   | 1.0                     | nd          | 103%       | nd             | 104%       | 99%        | 5%  |
| 1,2-Dichloropropane                     | 1.0                     | nd          |            | nd             |            |            |     |
| Dibromomethane                          | 1.0                     | nd          |            | nd             |            |            |     |
| Bromodichloromethane                    | 1.0                     | nd          |            | nd             |            |            |     |
| 4-Methyl-2-pentanone (MIBK)             | 1.0                     | . nd        |            | nd             |            |            |     |
| cis-1,3-Dichloropropene                 | . 1.0                   | nd          |            | nd             |            |            |     |
| Toluene                                 | 1.0                     | nd          | 116%       | nd             | 116%       | 105%       | 10% |
| trans-1,3-Dichloropropene               | 1.0                     | nd          |            | nd             |            |            |     |
| 1,1,2-Trichloroethane                   | 1.0                     | nd          |            | nd             |            |            |     |
| 2-Hexanone                              | 1.0                     | nd          |            | nd             |            |            |     |
| 1,3-Dichloropropane                     | 1.0                     | nd          |            | nd             |            |            |     |
| Dibromochloromethane                    | 1.0                     | nd          |            | nd             |            |            |     |
| Tetrachloroethene (PCE)                 | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2-Dibromoethane (EDB)                 | 0.10                    | , . nd      | 1000/      | nd             | 1209/      | 1110/      | 8%  |
| Chlorobenzene                           | 1.0                     | nd          | 122%       | nd             | 120%       | 111%       | 8%  |
| 1,1,1,2-Tetrachloroethane               | 1.0<br>1.0              | nd<br>nd    |            | nd<br>nd       |            |            |     |
| Ethylbenzene                            | 1.0                     | nd          |            | nd ·           |            |            |     |
| Xylenes                                 | 1.0                     | nd          |            | , nd           |            |            |     |
| Styrene<br>Bromoform                    | 1.0                     | nd          |            | nd             |            |            |     |
| 1,1,2,2-Tetrachloroethane               | 1.0                     | nd          |            | nd             |            |            |     |
| Isopropylbenzene                        | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2,3-Trichloropropane                  | 1.0                     | nd          |            | nd             |            |            |     |
| Bromobenzene                            | 1.0                     | .nd         |            | nd             |            |            |     |
| n-Propylbenzene                         | 1.0                     | nd          |            | nd             |            |            |     |
| 2-Chlorotoluene                         | 1.0                     | nd          |            | nd             |            |            |     |
| 4-Chlorotoluene                         | 1.0                     | nd          |            | nd             |            |            |     |
| 1,3,5-Trimethylbenzene                  | 1.0                     | nd          |            | nd             | ٠.         |            |     |
| tert-Butylbenzene                       | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2,4-Trimethylbenzene                  | 1.0                     | nd          |            | nd             |            |            |     |
| sec-Butylbenzene                        | 1.0                     | nd          |            | nd             |            |            |     |
| 1,3-Dichlorobenzene                     | 1.0                     | nd          |            | nd             | •          |            |     |
| 1,4-Dichlorobenzene                     | 1.0                     | nd          |            | nd             |            |            |     |
| Isopropyltoluene                        | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2-Dichlorobenzene                     | 1.0                     | nd          |            | nd             |            |            |     |
| n-Butylbenzene                          | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2-Dibromo-3-Chloropropane             | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2,4-Trichlorobenzene                  | 1.0                     | nd          |            | nd             |            |            |     |
| Naphthalene                             | 1.0                     | nd          |            | nd             |            |            |     |
| Hexachloro-1,3-butadiene                | 1.0                     | nd          |            | nd             |            |            |     |
| 1,2,3-Trichlorobenzene                  | 1.0                     | nd          |            | . nd           |            |            |     |

<sup>\*-</sup>instrument detection limits

#### ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

Client:

Washington Department of Fish and Wildlife

Client Job Name:

Byron Ponds

#### Analytical Results

| 8260, µg/L            |           | MTH BLK  | LCS      | Byron Ponds | MS       | MSD      | RPD |
|-----------------------|-----------|----------|----------|-------------|----------|----------|-----|
| Matrix                | Water     | Water    | Water    | Water       | Water    | Water    |     |
| Sample Collected      | Reporting |          |          | 04/01/08    |          |          |     |
| Date analyzed         | Limits    | 04/04/08 | 04/04/08 | 04/04/08    | 04/04/08 | 04/04/08 |     |
|                       |           |          |          |             |          |          |     |
| Surrogate recoveries: |           |          |          | i           |          |          |     |
| Dibromofluoromethane  |           | 133%     | 126%     | 128%        | 125%     | 126%     |     |
| Toluene-d8            |           | 108%     | 106%     | . 101%      | 106%     | 104%     |     |
| 4-Bromofluorobenzene  |           | 96%      | 96%      | 98%         | 92%      | 95%      |     |

#### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits
J - estimated quantitation, below listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

Client: Client Job Name:

Washington Department of Fish and Wildlife Byron Ponds

Analytical Results

| Analytical Results                                 |                    |                   |                   |                   | ·                 |                   |             |
|----------------------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------|
| 8270, μg/L                                         | 144-1              | MTH BLK           | , LCS             | Byron Ponds       | MS_               | MSD               | RPD         |
| Matrix Date extracted                              | Water<br>Reporting | Water<br>04/09/08 | Water<br>04/09/08 | Water<br>04/07/08 | Water<br>04/09/08 | Water<br>04/09/08 | <del></del> |
| Date analyzed                                      | Limits             | 04/09/08          | 04/09/08          | 04/09/08          | 04/09/08          | 04/09/08          |             |
| Sample collected                                   |                    |                   |                   | 04/01/08          |                   |                   |             |
| Pyridine                                           | 2.0                | nd                |                   | nd                |                   |                   |             |
| Aniline                                            | 2.0                | nd                |                   | nd                |                   |                   |             |
| Phenol                                             | 2.0                | nd                |                   | nd                | 84%               | 90%               | 7%          |
| 2-Chlorophenol                                     | 2.0<br>2.0         | nd<br>nd          |                   | nd<br>nd          | 107%              | 111%              | 4%          |
| Bis (2-chloroethyl) ether 1,3-Dichlorobenzene      | 2.0                | nd                |                   | nd                |                   |                   | •           |
| 1,4-Dichlorobenzene                                | 2.0                | nd                | 112%              | nd                | 102%              | 100%              | 2%          |
| 1,2-Dichlorobenzene                                | 2.0                | nd                |                   | nd                |                   |                   |             |
| N-methylpyrrolidone                                | 2.0                | nd                |                   | nd<br>nd          |                   |                   |             |
| Benzyl alcohol 2-Methylphenol (o-cresol)           | 2.0<br>2.0         | nd<br>nd          |                   | nd                |                   |                   |             |
| Bis (2-chloroisopropyl) ether                      | 10.0               | nd -              |                   | nd                |                   |                   |             |
| 3,4-Methylphenol (m,p-cresol)                      | 2.0                | nd                |                   | nd                |                   |                   |             |
| Hexacholorethane                                   | 2.0                | nd                |                   | nd                | 4400/             | 4400/             | 0%          |
| N-Nitroso-di-n-propylamine<br>Nitrobenzene         | 2.0<br>2.0         | nd<br>nd          |                   | nd nd             | 110%              | 110%              | U70         |
| Isophorone                                         | 2.0                | nd                |                   | nd nd             |                   |                   |             |
| 2-Nitrophenol                                      | 10.0               | nd                |                   | nd                |                   | •                 |             |
| 4-Nitrophenol                                      | 10.0               | . nd              | •                 | nd                |                   |                   |             |
| 2,4-Dimethylphenol                                 | 2.0                | nd                |                   | . nd              | 98%               | 102%              | 4%          |
| Bis (2-chloroethoxy) methane<br>2,4-Dichlorophenol | 2.0<br>10.0        | nd<br>nd          |                   | nd<br>nd          |                   |                   |             |
| 1,2,4-Trichlorobenzene                             | 2.0                | nd                |                   | nd                | 120%              | 117%              | 3%          |
| Naphthalene                                        | 2.0                | nd                |                   | nd                |                   |                   |             |
| 4-Chlomaniline                                     | 10.0               | nd                |                   | nd                |                   |                   |             |
| Hexachlorobutadiene .                              | 2.0<br>10.0        | nd                | 104%              | nd<br>nd          | 76%               | 81%               | 6%          |
| 4-Chloro-3-methylphenol<br>2-Methylnapthalene      | 2.0                | nd<br>nd          |                   | nd                | 7078              | 0170              | , 070,      |
| 1-Methylnapthalene                                 | 2.0                | nd                |                   | nd                |                   |                   |             |
| Hexachlorocyclopentadiene                          | 2.0                | nd                |                   | nd                |                   |                   |             |
| 2,4,6-Trichlorophenol                              | 10.0               | nd                |                   | nd                |                   |                   |             |
| 2,4,5-Trichlorophenol 2-Chloronaphthalene          | 10.0<br>2.0        | nd<br>nd          |                   | nd<br>nd          |                   |                   |             |
| 2-Nitroaniline                                     | 10.0               | uq                |                   | nd                |                   |                   |             |
| 1,4-Dinitrobenzene                                 | 10.0               | nd                |                   | nd                |                   |                   |             |
| Dimethylphthalate                                  | 2.0                | nd                |                   | nd                |                   |                   |             |
| Acenaphthylene                                     | 0.2                | nd                |                   | nd                |                   |                   |             |
| 1,3-Dinotrobenzene<br>2,6-Dinitrotoluene           | 10.0               | nd<br>nd          |                   | nd<br>nd          |                   |                   |             |
| 1,2-Dinitrobenzene                                 | 2.0                | nd                |                   | nd                |                   |                   | •           |
| Acenaphthene                                       | 0.2                | nd                | 105%              | nd                | 97%               | 98%               | 1%`         |
| 3-Nitroaniline                                     | 10.0               | nd                |                   | nd                |                   |                   |             |
| Dibenzofuran                                       | 2.0<br>2.0         | nd<br>nd          |                   | nd<br>nd          | 79%               | 80%               | 1%          |
| 2,4-Dinitrotoluene<br>2,3,4,6-Tetrachlorophenol    | 2.0                | nd                |                   | nd                | 1570              | 0070              | . 70        |
| 2,3,5,6-Tetrachlorophenol                          | 2.0                | nd                |                   | nd                |                   |                   |             |
| 2,4-Dinitrophenol                                  | 10.0               | nd                |                   | . nd              |                   |                   |             |
| Fluorene                                           | 0.2                | nd                |                   | nd                |                   |                   |             |
| 4-Chlorophenylphenylether<br>Diethylphthalate      | 2.0<br>2.0         | nd<br>nd          |                   | nd<br>nd          |                   |                   |             |
| 4-Nitroaniline                                     | 10.0               | nd                |                   | nd                |                   |                   |             |
| 4,6-Dinitro-2-methylphenol                         | 10.0               | nd                |                   | nd                |                   |                   |             |
| N-nitrosodiphenylamine                             | 2.0                | nd                | 105%              | nd                |                   |                   |             |
| Azobenzene                                         | 2.0                | nd                |                   | nd<br>nd          |                   |                   |             |
| 4-Bromophenylphenylether Hexachlorobenzene         | 2.0<br>2.0         | nd<br>nd          |                   | nd                |                   |                   |             |
| Pentachlorophenol                                  | 10.0               | nd                |                   | · nd              |                   |                   |             |
| Phenanthrene                                       | 0.2                | nd                |                   | nd                |                   |                   |             |
| Anthracene                                         | 0.2                | nd                |                   | nd                |                   |                   |             |
| Carbazole                                          | 2.0                | nd<br>nd          |                   | nd<br>ba          |                   |                   |             |
| Di-n-butylphthalate<br>Fluoranthene                | 2.0                | nd<br>nd          | 111%              | nd<br>nd          |                   |                   |             |
| Pyrene                                             | 0.2                | nd                |                   | nd                | 92%               | 92%               | . 0%        |
| Butylbenzylphthalate                               | 2.0                | nd                |                   | nd                |                   |                   |             |
| Bis(2-ethylhexyl) adipate                          | 2.0                | nd                |                   | nd                |                   |                   |             |
| Benzo(a)anthracene                                 | 0.2<br>0.2         | nd                |                   | nd<br>nd          |                   |                   |             |
| Chrysene<br>Bis (2-ethylhexyl) phthalate           | 2.0                | nd<br>nd          |                   | nd<br>nd          |                   |                   |             |
| Di-n-octyl phthalate                               | 2.0                | nd                | 91%               | nd                |                   |                   |             |
| Benzo(b)fluoranthene                               | 0.2                | nd                |                   | nd                |                   |                   |             |
| Benzo(k)fluoranthene                               | 0.2                | nd                |                   | nd                |                   |                   |             |
| Benzo(a)pyrene                                     | 0.2<br>0.2         | nd<br>nd          |                   | nd<br>nd          |                   |                   |             |
| Dibenzo(a,h)anthracene<br>Benzo(ghl)perylene       | 0.2                | nd<br>nd          |                   | nd                |                   |                   |             |
| Indeno(1,2,3-cd)pyrene                             | 0.2                | nd                |                   | nd                |                   |                   |             |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

Client: Client Job Name:

Washington Department of Fish and Wildlife Byron Ponds

#### Analytical Results

| 8270, µg/L           | -         | MTH BLK  | LCS      | Byron Ponds | MS       | MSD      | RPD |
|----------------------|-----------|----------|----------|-------------|----------|----------|-----|
| Matrix               | Water     | Water    | Water    | Water       | Water    | Water    |     |
| Date extracted       | Reporting | 04/09/08 | 04/09/08 | 04/07/08    | 04/09/08 | 04/09/08 |     |
| Date analyzed        | Limits    | 04/09/08 | 04/09/08 | 04/09/08    | 04/09/08 | 04/09/08 |     |
| Sample collected     |           | ,        |          | 04/01/08    |          |          |     |
|                      |           |          |          |             |          |          |     |
|                      |           |          |          |             |          |          |     |
| Surrogate recoveries |           |          |          |             |          |          |     |

| 2-Fluorophenol       |   | . 79% |      | 124% | 87% | 86% |
|----------------------|---|-------|------|------|-----|-----|
| Phenol-d6            |   | 75%   |      | 116% | 89% | 89% |
| Nitrobenzene-d5      | • | 106%  | 104% | 105% | 86% | 83% |
| 2-Fluorobiphenyl     |   | 93%   | 114% | 107% | 86% | 85% |
| 2,4,6-Tribromophenol |   | 83%   |      | 106% | 91% | 92% |
| 4-Terphenyl-d14      |   | 95%   | 120% | 103% | 89% | 86% |

Data Qualifiers and Analytical Comments
ad - not detected at listed reporting limits
Acceptable Recovery limits;
2-Flurophenol: 10-135 %
Phenol - d5: 10-135 %
2,4,6- tribromophenol: 29-159%
Nitrobenzene - d5: 20-120 %
2-Flurobiphenyl: 50-150%
p-Terphenyl-d14: 50-150%
Acceptable RPD limit: 35%

# CEE CEE AH CREEK POST-REHABILITATION REPORT

# **Table of Contents**

| List of Figures                                                                | 3         |
|--------------------------------------------------------------------------------|-----------|
| List of Tables                                                                 | 3         |
| Project Description and Purpose                                                | 4         |
| Project Description and Purpose                                                |           |
| Water Name:                                                                    |           |
| Geographic Location:                                                           | 4         |
| Date(s) Treated:                                                               | 4         |
| Physical Characteristics of Cee Cee Ah Creek                                   | 6         |
| Rotenone Treatment                                                             | 8         |
| Treatment Design                                                               | 8         |
| Toxicant Used                                                                  |           |
| Application Method(s)                                                          | 8         |
| Rotenone Application Implementation                                            |           |
| Rotenone Bioassay                                                              | 9         |
| Rotenone Detoxification                                                        | 10        |
| Detoxification Design and Implementation.                                      | 10        |
| Application Method and Rate                                                    | 10        |
| Determination of Biochemical Organic Demand                                    | 11        |
| Detoxification Bioassay                                                        | 11        |
| Pre and Post Treatment Monitoring (All monitoring was conducted as outlined in | WDFW's    |
| NPDES permit WA0041009)                                                        | 12        |
| Impact to Non-targeted Organisms                                               | 12        |
| Liquid Rotenone Formulation Longevity                                          | 13        |
| Period of Toxicity                                                             | 13        |
| Attachment ADye Tracing and Flow Time Calculations for Cee Cee Ah Creek Tr     | eatment   |
| Reach                                                                          | 14        |
| Attachment B Staff and Licensed Applicators. Including staff member(s) name,   | employer. |
| pesticide applicator license number and assignment per treatment               | 16        |
| Attachment C. – Pre and Post Treatment Fish Population Monitoring              | 17        |
| Attachment D. Photographs of Cee Cee Ah Creek Project                          | 23        |

# **List of Figures**

| Figure 1 Pend Oreille River from Pend Oreille Lake to Canadian Border including Cee C Creek Watershed.                                                                            |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure 2 Cee Cee Ah Creek Project Location including drip station locations, detoxificate locations, water quality and discharge sample sites and macroinvertebrate sample sites. | ion station |
| List of Tables                                                                                                                                                                    |             |
| Table 1. Water quality parameters collected for Cee Cee Ah Creek including temperature oxygen, pH, specific conductivity, turbidity and flow (cfs)                                |             |
| Table 2. Section number, flow (cfs) for each section during time of treatment and millilit                                                                                        | ers of      |
| rotenone applied per section for each treatment.                                                                                                                                  |             |
| Table 3. Potassium permanganate distribution rates, and required amounts in volume an                                                                                             | ıd          |
| poundage for the duration of each treatment.                                                                                                                                      | 12          |
| Table 4 Disagram Dates and Times for Cas Cas Ah Creak Project                                                                                                                     | 12          |

# **Project Description and Purpose**

#### Water Name:

Cee Cee Ah Creek

## Geographic Location:

Pend Oreille County – Section(s) 1, 11, 12, 14, 15, 21, 22, and 28, Township 34 North, Range 44 East

#### Date(s) Treated:

September 8-12, 2008 (Treatment 1) and September 22-26, 2008 (Treatment 2)

The Washington Department of Fish and Wildlife (WDFW) and Kalispel Tribe of Indians Natural Resources Department (KNRD) attempted to eradicate, through the use of the piscicide rotenone, non-native brook trout from Cee Cee Ah Creek (Figure 1) and will reintroduce a native fish species assemblage.

Competition and/or introgression with non-native salmonids are among the primary factors associated with the loss of native cutthroat trout populations. Brook trout may have a larger impact on native cutthroat trout than any other non-native salmonid (Griffith 1988). Brook trout introductions in Yellowstone National Park have nearly always resulted in the disappearance of the native cutthroat trout population (Varley and Gresswell 1988).

Stocking of non-native salmonids (primarily brook trout) in Pend Oreille River tributaries has occurred since 1933 (WDFW unpublished data). Since 1995, KNRD has sampled 274 sites in Pend Oreille River tributaries; westslope cutthroat trout were observed in only 50% of the sites. Of the 137 sites where westslope cutthroat trout were present, 45 (33%) of the sites contained isolated allopatric populations. Mean cutthroat trout density in allopatric sites (mean 14.4 fish/100m2) was significantly greater than westslope cutthroat density in sites sympatric with brook trout (mean 4.4 fish/100m2, P < 0.001 by t test).

Because of negative interactions with brook trout, westslope cutthroat trout may have recently been extirpated in a handful of tributary streams to the Pend Oreille River. A survey conducted in 1996 in upper Cee Cee Ah Creek found 1 cutthroat trout and 118 brook trout in six 30-meter snorkel survey stations. In seven years of snorkel surveys to monitor habitat enhancement sites, KNRD observed only 3 cutthroat trout while brook trout numbered 1,767. Finally, in 2002 KNRD sampling crews electrofished upper Cee Cee Ah Creek to obtain cutthroat trout samples for genetic analysis; despite a comprehensive effort that extended into the headwaters beyond occupied habitat, no cutthroat trout were captured.

The extirpation of westslope cutthroat from Cee Cee Ah Creek is likely the result of an expanding brook trout population. In an attempt to reverse the downward trend in westslope cutthroat populations in Cee Cee Ah creek, the upper 5.15 miles of the creek was treated with rotenone to eliminate brook trout and a native westslope cutthroat trout population will be re-established.



Figure 1 Pend Oreille River from Pend Oreille Lake to Canadian Border including Cee Cee Ah Creek Watershed

DEPARTMENT OF EGOLOGY

MAY 1 9 2009

WATER QUALITY PHOGRAM

This project was a model project to determine the efficacy of removing brook trout from Pend Oreille River tributaries using rotenone, and re-establishing native westslope cutthroat trout. The treatment reach is upstream of an impassable falls preventing the natural reinvasion of non-native species currently present in lower Cee Cee Ah Creek. Detoxification of rotenone occurred at the barrier falls and below the falls using potassium permanganate to prevent downstream fish mortality.

Upper Cee Cee Ah Creek (Figure 2) was treated twice in September 2008 with liquid rotenone at a concentration of 1.0 parts per million (ppm) and 0.5 ppm respectively. Rotenone was applied using California Drip Cans spaced approximately one-hour flow time apart throughout the treatment area. Backpack sprayers and powdered rotenone sand-mixture were used to treat backwater and spring areas. During treatment the stream was closed to angling and other recreational uses.

The native westslope cutthroat trout population will be re-established by 2012 with locally adapted stocks at densities to be determined by the managers. No removal of dead fish was planned as the nutrient base contained therein was best returned to the stream.

Biological assessments of standing biomass of brook trout were conducted prior to treatment (Attachment C). Post-treatment monitoring of presence/absence of brook trout will be conducted in spring and summer of 2009 to determine efficacy of the treatment. If brook trout are present the stream will be treated with rotenone again in 2009.

# Physical Characteristics of Cee Cee Ah Creek

Pre-treatment water quality parameters were collected from multiple sites within the project area (Figure 2). Physical Parameters for the treatment reach were surveyed once prior to implementation of the project (Table 1). It was assumed that minimal change of physical parameters occurred between Treatments.

Table 1. Water quality parameters collected for Cee Cee Ah Creek including temperature, dissolved oxygen, pH, specific conductivity, turbidity and flow (cfs).

| SITE        | DATE       | TEMP(C) | DO mg/L | pH units | SP COND us/cm | TURB Ntus | CFS  |
|-------------|------------|---------|---------|----------|---------------|-----------|------|
| Below Ponds | 09/03/2008 | 6.77    | 9.97    | 6.77     | 28.02         | 5.8       | 0.28 |
| CCA2        | 09/02/2008 | 7.00    | 10.12   | 7.52     | 50.89         | 0.7       | 0.97 |
| CCA2        | 09/04/2008 | 6.71    | 10.08   | 7.31     | 51.43         | 0.4       | 0.86 |
| CCA1A       | 09/04/2008 | 8.55    | 10.21   | 7.46     | 55.83         | 1.7       | 1.07 |
| BRN2        | 09/02/2008 | 10.35   | 9.47    | 7.51     | 56.50         | 1.1       | 5.20 |
| BRN1        | 09/04/2008 | 9.02    | 10.16   | 7.03     | 66.08         | 0.0       | 5.96 |



DEPARTMENT OF EGOLOGY

Figure 2 Cee Cee Ah Creek Project Location including drip station locations, detoxification station locations, water quality and discharge sample sites and macroinvertebrate sample sites.

NAMERICAL COOPER

## **Rotenone Treatment**

#### **Treatment Design**

5.15 miles of Cee Cee Ah Creek was designated for rotenone treatment (Figure 2). This section of stream was selected for brook trout eradication because it was located above a barrier falls that eliminated the likelihood that brook trout would re-colonize the stream naturally.

On October 18, 2007, dye tracing was conducted to ascertain flow time from the start of the treatment section to the barrier falls. Rhodamine tracing dye was placed into the creek and followed for the length of the treatment reach. GPS waypoints were taken for each one hour flow increment over the length of the treatment reach. It was determined that the flow period from start to finish was approximately 31 hours (Attachment A).

The treatment reach was broken into 31 sections with a mean flow time of 1 hour per section (Figure 2). Each treatment section was demarcated with GPS coordinates. Prior to implementation of the project most treatment sections had trails cleared to the top of the treatment reach, and were identified with trail flagging to facilitate section location for implementation staff.

Treatment implementation timing was chosen to treat the stream at the low flow period for the year (Table 2). Low flow period was chosen to limit the amount of rotenone required to effectively treat the stream, to concentrate target fishes in the channel limiting fish avoidance capabilities in backwaters and seep areas, to decrease the amount of potassium permanganate (KMnO<sub>4</sub>) used for detoxification, and to decrease detoxification complexity and likelihood of failure of the detoxification process.

## **Toxicant Used**

Rotenone – Cube powdered Fish Toxicant EPA Reg # 6458-6, Liquid CFT Legumine EPA Reg # 75338-2.

### Application Method(s)

Powdered rotenone (7.4 percent active ingredient) was used for sand mixture. The sand mixture formula was a combination of one pound powered rotenone to one pound clean sand to two ounces of gelatin and the appropriate amount of water to make a dry mud mix. Approximately 16 pounds (8 pounds of powdered rotenone) of rotenone sand mixture was used per treatment. Sand mixture was applied to seeps and springs for slow release of rotenone into those areas that recharged with groundwater too rapidly to retain lethal doses of liquid rotenone, or were disconnected from the channel preventing fish exposure to a constant flow of treated water.

Liquid rotenone (5 percent active ingredient) was dispensed from California drip cans directly into the stream. In addition, crews treated backwaters and springs with backpack sprayers. Liquid rotenone was discharged at a rate to keep a constant concentration of approximately 1ppm in the entire treatment reach (Table 1). Liquid rotenone was also placed in two small headwater ponds. Approximately 0.50 gallons were applied to the upper pond and 0.35 gallons were applied to the lower pond. Total liquid rotenone used for Treatment 1 was 3.65 gallons. Total liquid rotenone used for Treatment 2 was 2.45 gallons.

## **Rotenone Application Implementation**

There were two treatments conducted on the treatment reach and headwater ponds. Treatment 1 commenced at 11 am on September 9, 2008 and ended 35 hours later. Treatment 2 commenced at 10 am September 23, 2008 and ended 35 hours later.

The treatment reach was broken into 31 treatment sections. Each treatment section was outfitted with a treatment packet. Contained in the packet was a 5 gallon California drip can, 500 ml screw top rotenone vessel with the prescribed amount of rotenone for the assigned treatment reach, safety gear (protective glasses, rubber gloves), 1000 ml graduated cylinder, handheld VHF radio, stopwatch, flashlight, notebook, pencils, and a 5-gallon bucket.

California drip cans were deployed at each reach start, with prescribed amounts of rotenone to be dripped into the creek during a 4 hour treatment period (Table 2). Each assigned treatment staff member was designated to charge the drip can with the prescribed amount of rotenone and top the drip can off with water. The action from filling the can with water was assumed to mix the rotenone thoroughly into solution so that it was consistently delivered to the stream during the 4 hour treatment period. The California drip can outlet had an adjustable outlet valve allowing flow from the drip can to be calibrated. Flow from the drip can was calibrated using a 1000 ml graduated cylinder and stopwatch. The flow rate to empty the 5-gallon drip can into the creek during a 4 hour treatment period at the prescribed concentration was 78 ml/minute.

In concert with the drip cans, rotenone was distributed by roving teams outfitted with rotenone sand mixture and liquid rotenone 5-gallon backpack sprayers. Two teams were deployed during Treatment 1 to treat backwaters, side channels and seep areas. During Treatment 1 it was determined that a considerably larger area than anticipated required attention from the roving teams. Therefore, four roving teams were deployed during Treatment 2 for the same task.

All staff was directed to arrive at their assigned station 30 minutes prior to implementation time to set up and prepare for dispersal of rotenone. Treatments began simultaneously to facilitate thorough application of the rotenone. Treatment 1 started at 11:00 am and Treatment 2 started at 10:00 am. Because of the size and scope of the project up to 37 staff were involved during the treatments (Attachment B). To comply with the Washington Department of Agriculture pesticide application regulations there were up to 14 licensed pesticide applicators involved in each treatment. Licensed Applicators were distributed in the project area to provide for eyeshot and earshot coverage of the project staff. All staff, including licensed applicators, were outfitted with handheld radios to facilitate safety and effective communication between and amongst implementers of the project.

### **Rotenone Bioassay**

Every even numbered treatment station received a bioassay cage and five live brown trout to allow for observation of rotenone delivery and toxicity timing for each treatment reach. Live boxes were placed at the upstream end of each even numbered reach and applicators were instructed to take detailed notes on when fish appeared to be affected by rotenone (erratic behavior) and when they succumbed to rotenone (loss of equilibrium). This measure was taken to determine if flow time calculations were correct for each treatment reach. For each bioassay station during Treatment 1 the mean time to recognizing rotenone exposure behaviors was 1.07 hours from commencement of the project and the mean time for loss of equilibrium was 1.29 hours from commencement of the project.

Two small headwater ponds were treated with rotenone using a 10-foot canoe and backpack sprayers. Mean size for the two ponds was approximately 1 acre, and mean depth was approximately 2 feet. Treatment time was concurrent with treating the stream. Very few fish were found dead or dying in these small ponds.

Table 2. Section number, flow (cfs) for each section during time of treatment and milliliters of rotenone applied per section for each treatment.

| Section | Flow  | Treatment 1 | Treatment 2 | Section | Flow  | Treatment 1 | Treatment 2 |
|---------|-------|-------------|-------------|---------|-------|-------------|-------------|
| Number  | (cfs) | ml of       | ml of       | Number  | (cfs) | ml of       | ml of       |
|         |       | rotenone    | rotenone    |         |       | rotenone    | rotenone    |
| 1       | 0.5   | 204         | 102         | 17      | 0.85  | 346         | 173         |
| 2       | 0.5   | 204         | 102         | 18      | 0.85  | 346         | 173         |
| 3       | 0.5   | 204         | 102         | 19      | 1.0   | 408         | 204         |
| 4       | 0.75  | 306         | 153         | 20      | 1.0   | 408         | 204         |
| 5       | 0.75  | 306         | 153         | 21      | 1.0   | 408         | 204         |
| 6       | 0.75  | 306         | 153         | 22      | 1.0   | 408         | 204         |
| 7       | 0.75  | 306         | 153         | 23      | 1.0   | 408         | 204         |
| 8       | 0.75  | 306         | 153         | 24      | 1.0   | 408         | 204         |
| 9       | 0.75  | 306         | 153         | 25      | 1.0   | 408         | 204         |
| 10      | 0.75  | 306         | 153         | 26      | 1.0   | 408         | 204         |
| 11      | 0.75  | 306         | 153         | 27      | 1.0   | 408         | 204         |
| 12      | 0.75  | 306         | 153         | 28      | 1.0   | 408         | 204         |
| 13      | 0.85  | 346         | 173         | 29      | 1.0   | 408         | 204         |
| 14      | 0.85  | 346         | 173         | 30      | 1.0   | 408         | 204         |
| 15      | 0.85  | 346         | 173         | 31      | 0.75  | 306         | 153         |
| 16      | 0.85  | 346         | 173         | Total   |       | 10644 ml    | 5322 ml     |

## **Rotenone Detoxification**

## **Detoxification Design and Implementation**

Detoxification was done at two locations using potassium permanganate (KMnO<sub>4</sub>). Station 1, was placed at the barrier waterfall and Station 2, 30 minutes flow time downstream (Figure 2). Two detoxification stations were utilized to prevent accidental distribution of rotenone beyond the project area. During both treatments there were no dead or distressed fish found beyond the prescribed treatment area.

Detoxification for each treatment was initiated one half hour prior to delivery of rotenone to the stream and was conducted for 35 hours to assure that undetectable amounts of rotenone were present at cessation of detoxification.

# **Application Method and Rate**.

At Station 1, KMnO<sub>4</sub> was dispersed into the stream using a "Mini-Typhoon" sump pump (manufactured by Proactive Environmental Products). Flow from the pump was controlled with a 12- volt low flow sampling controller. The low flow sampling controller allowed for incremental

adjustment of KMnO<sub>4</sub> into the creek. At Station 2, KMnO<sub>4</sub> was dispersed into the stream using a drip bucket. A small hole (~3/32 of an inch) was drilled into the bottom of the bucket to allow for constant drip of liquefied KMnO<sub>4</sub>. KMnO<sub>4</sub> solution level in the bucket was kept full to maintain constant head pressure and flow rate.

Based on biochemical organic demand (BOD) and rotenone concentration, detoxification in the stream required 3.0 ppm KMnO<sub>4</sub>, 1.0 ppm to neutralize the rotenone and 2.0 ppm to account for the BOD. Both detoxification stations were scheduled to deliver 3ppm concentration of KMnO<sub>4</sub>. However during Treatment 1, to compensate for organic demand, and to assure that the rotenone was entirely oxidized before leaving the project area, Station 1 was operated at 4.5 ppm of KMnO<sub>4</sub> until the organic demand was oxidized between the two detoxification stations. KMnO<sub>4</sub> color reached Station 2 at approximately detoxification hour six, at this point the KMnO<sub>4</sub> concentration at Station 1 was lowered to 3 ppm. Both stations during Treatment 1 delivered the constant rate of 3ppm post treatment hour six. During Treatment 2 the concentration for both detoxification stations remained at a constant 3 ppm.

A 2.5 percent solution of KMnO<sub>4</sub> was used for both treatments. To create a 2.5 percent solution 1.01 pounds of KMnO<sub>4</sub> was mixed with 5 gallons of water. To keep KMnO<sub>4</sub> in solution, constant agitation was required. KMnO<sub>4</sub> 2.5 percent solution was dripped into the creek with a flow of 1cfs at a rate of 210 ml/min to maintain a concentration of 3ppm, and at 325 ml/min to maintain a concentration of 4.5 ppm (Table 3).

# **Determination of Biochemical Organic Demand**

Determination of Biochemical Organic Demand (BOD) was done using the guidelines in Engstrom-Heg (1971) for measuring organic demand of KMnO<sub>4</sub>, a titration of KMnO<sub>4</sub> into the waters of Cee Cee Ah Creek was performed. 10mg of KMnO<sub>4</sub> were dissolved into 1,000 ml of water to create a solution of 10,000 ppm. This solution was diluted three times at 10:1 to create a 10 ppm solution. The 10-ppm solution was further diluted into a 1,000 ml beaker to create dilutions of 1.0, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, and 2.5 ppm. The 10 measured solutions were titrated with Cee Cee Ah Creek water for 20 minutes each. After the 20 minute titration, color had been removed from the water in the 1.0, 1.5, 1.6, 1.7, 1.8, and 1.9 ppm solutions, but remained in the 2.0, 2.1, 2.2, and 2.5 ppm solutions. Therefore the biochemical organic demand of Cee Cee Ah Creek water was determined to be between 1.9 and 2.0 ppm for KMnO<sub>4</sub>.

## **Detoxification Bioassay**

A bioassay box was placed 5 meters upstream of Detoxification Station 1, and 20 meters upstream and downstream of Station 2. For Station 1 during Treatment 1, based on bioassay box and rapidity of fish response to rotenone, toxicity levels of rotenone at Station 1 reached a peak concentration of 1.5 ppm at hour 12 of detoxification. Concentrations dropped to approximately 1 ppm by hour 20 and slowly reduced to trace or 0 by hour 35.

For Station 2 during Treatment 1, the bioassay box 20 meters above Station 2 experienced a fish kill at approximately detoxification hour 6.5. This kill was likely due to a "slug" of rotenone that was not oxidized by the KMnO<sub>4</sub>. The fish were replaced in the bioassay box and no further mortality was observed for the duration of the treatment. Concurrently, the bioassay box 20 meters below Station 2 did not have a fish kill. The presence of the secondary detoxification station delivering an additional 3ppm of KMnO<sub>4</sub> prevented the dispersal of rotenone out of the project area. The

technique of using multiple detoxification sites likely aided in preventing any unwanted fish kills below the project area.

Bioassay at both detoxification stations was conducted; cessation of the detoxification was only done post survival of fish at the bioassay 5 meters above Station 1 for 1 hour of exposure to stream water. Survival of bioassay fish at Station 1 did not occur for either treatment until treatment hour 35.

Table 3. Potassium permanganate distribution rates, and required amounts in volume and poundage for the duration of each treatment.

| CFS  | ml/min | Gallons/35 hours | Lbs/35hrs | Lbs/5 gal |
|------|--------|------------------|-----------|-----------|
| 1    | 210    | 116.51           | 23.56     | 1.01      |
| 0.95 | 199.5  | 110.69           | 22.38     | 1.01      |
| 0.9  | 189    | 104.86           | 21.21     | 1.01      |
| 0.85 | 178.5  | 99.04            | 20.03     | 1.01      |
| 0.8  | 168    | 93.21            | 18.85     | 1.01      |
| 0.75 | 157.5  | 87.38            | 17.67     | 1.01      |
| 0.7  | 147    | 81.56            | 16.49     | 1.01      |
| 0.65 | 136.5  | 75.73            | 15.32     | 1.01      |
| 0.6  | 126    | 69.91            | 14.14     | 1.01      |
| 0.55 | 115.5  | 64.08            | 12.96     | 1.01      |
| 0.5  | 105    | 58.26            | 11.78     | 1.01      |
| 0.45 | 94.5   | 52.43            | 10.60     | 1.01      |
| 0.4  | 84     | 46.61            | 9.42      | 1.01      |
| 0.35 | 73.5   | 40.78            | 8.25      | 1.01      |
| 0.3  | 63     | 34.95            | 7.07      | 1.01      |
| 0.25 | 52.5   | 29.13            | 5.89      | 1.01      |
| 0.2  | 42     | 23.30            | 4.71      | 1.01      |
| 0.15 | 31.5   | 17.48            | 3.53      | 1.01      |
| 0.1  | 21     | 11.65            | 2.36      | 1.01      |
| 0.05 | 10.5   | 5.83             | 1.18      | 1.01      |

**Pre and Post Treatment Monitoring** (All monitoring was conducted as outlined in WDFW's NPDES permit WA0041009)

# **Impact to Non-targeted Organisms**

According to Bradbury (1986), the effects of rotenone on benthos are variable, depending on the concentrations and species. Crustaceans are most tolerant while the smaller insects are most affected. Immediate reduction of populations' averages 25%, and survival doubles when access to bottom sediments exists. Benthic communities generally recover to at least pretreatment levels within two months. Zooplankton is more severely impacted, and communities generally take two to twelve months to fully recover. While relatively tolerant of even heavy doses of rotenone, amphibians (especially larval) are at risk, and reptiles are affected somewhat less so. Almost no chance of eliminating an entire amphibian population exists. Livestock use of the waters to be treated will not be significantly affected. The concentration of rotenone used in the treatment was far below that considered harmful to mammals.

Invertebrates were sampled in accordance to the Washington Department of Ecology NPDES permit standards. See sample site as indicated in Figure 2. Sample analysis is in progress at the time of completion of this document. Final results will be included in future reporting.

# Liquid Rotenone Formulation Longevity

Water samples were taken at 24 hours post treatment and on March 9, 2009. The secondary sample was to be taken one month post treatment, but weather and road conditions precluded our ability to access areas to take the sample. The final sample was taken on March 10, 2009, when road conditions allowed access to the treatment area.

Samples are taken to check for residues related to the carriers present in the liquid formulation of rotenone. Water samples were taken in areas of the creek where the heaviest concentrations of liquid rotenone were applied. Samples were sent to an accredited lab for analyses per EPA methods. Samples were analyzed for methyl pyrrolidone and 117 volatile and semi-volatile organic compounds, including, benzene, toluene, phenol, xylene, and derivatives of these compounds, and detection limits were  $0.02\text{--}3.0~\mu\text{g/l}$ , variously. In samples taken from Cee Cee Ah Creek there were no detections of volatile or semi-volatile organic compounds or methyl pyrrolidone.

# **Period of Toxicity**

The bioassay station was 20 meters upstream of Detoxification Station 2 (Figure 2). Bioassay for Cee Cee Ah Creek was conducted 24 hours post treatment for both Treatment 1 and Treatment 2. Each bioassay was conducted using 5 brown trout for a duration of 48 hours. There were no observed mortalities of fish during either bioassay event (Table 4).

Table 4 Bioassay Dates and Times for Cee Cee Ah Creek Project.

| Treatment 1 |          |             |            |            |          |          |                 |
|-------------|----------|-------------|------------|------------|----------|----------|-----------------|
| Site        | No. Fish | Species     | Start Date | Start Time | End Date | End Time | No. Mortalities |
| Station 30  | 5        | Brown Trout | 15-Sep     | 1000       | 17-Sep   | 1530     | 0               |
| Treatment 2 |          |             |            |            |          |          |                 |
| Site        | No. Fish | Species     | Start Date | Start Time | End Date | End Time | No. Mortalities |
| Station 30  | 5        | Brown Trout | 30-Sep     | 930        | 02-Oct   | 1500     | 0               |

**Attachment A.-**Dye Tracing and Flow Time Calculations for Cee Cee Ah Creek Treatment Reach.

|         |            | Cumulative   | Cumulative | Cumulative |
|---------|------------|--------------|------------|------------|
| Section | Length (m) | Distance (m) | Miles      | Hours      |
|         |            |              |            | ·          |
| 1       | 100        | 100          | 0.062      | 0.4        |
| 2       |            |              |            |            |
| 3       | 100        | 200          | 0.124      | 0.7        |
| 4       | 100        | 300          | 0.186      | 1.1        |
| 5       | 100        | 400          | 0.248      | 1.5        |
| 6       | 200        | 600          | 0.372      | 2.3        |
| 7       | 100        | 700          | 0.434      | 2.7        |
| 8       | 100        | 800          | 0.496      | 2.9        |
| 9       | 100        | 900          | 0.558      | 3.2        |
| 10      | 100        | 1000         | 0.62       | 3.6        |
| 11      | 100        | 1100         | 0.682      | 3.9        |
| 12      | 100        | 1200         | 0.744      | 4.3        |
| 13      | 100        | 1300         | 0.806      | 4.7        |
| 14      | 100        | 1400         | 0.868      | 5.1        |
| 15      | 100        | 1500         | 0.93       | 5.6        |
| 16      | 100        | 1600         | 0.992      | 6.2        |
| 17      | 100        | 1700         | 1.054      | 6.7        |
| 18      | 100        | 1800         | 1.116      | 7.3        |
| 19      | 100        | 1900         | 1.178      | 7.8        |
| 20      | 100        | 2000         | 1.24       | 8.1        |
| 21      | 100        | 2100         | 1.302      | 8.4        |
| 22      | 100        | 2200         | 1.364      | 8.8        |
| 23      | 100        | 2300         | 1.426      | 9.2        |
| 24      | 100        | 2400         | 1.488      | 9.8        |
| 25      | 100        | 2500         | 1.55       | 10.3       |
| 26      | 100        | 2600         | 1.612      | 10.9       |
| 27      | 100        | 2700         | 1.674      | 11.6       |
| 28      | 270        | 2970         | 1.8414     | 13.1       |
| 29      | 100        | 3070         | 1.9034     | 13.5       |
| 30      | 100        | 3170         | 1.9654     | 14.0       |
| 31      | 100        | 3270         | 2.0274     | 14.4       |
| 32      | 100        | 3370         | 2.0894     | 14.8       |
| 33      | 100        | 3470         | 2.1514     | 15.0       |
| 34      | 100        | 3570         | 2.2134     | 15.4       |
| 35      | 100        | 3670         | 2.2754     | 15.7       |
| 36      | 100        | 3770         | 2.3374     | 16.0       |
| 37      | 100        | 3870         | 2.3994     | 16.3       |
| 38      | 100        | 3970         | 2.4614     | 16.7       |
| 39      | 100        | 4070         | 2.5234     | 17.2       |
| 40      | 100        | 4170         | 2.5854     | 17.4       |
| 41      | 100        | 4270         | 2.6474     | 17.7       |
| 42      | 100        | 4370         | 2.7094     | 18.0       |
| 43      | 100        | 4470         | 2.7714     | 18.2       |
| 44      | . 125      | 4595         | 2.8489     | 18.4       |
| 45      | 100        | 4695         | 2.9109     | 18.8       |
| 46      | 100        | 4795         | 2.9729     | 19.1       |
| 47      | 100        | 4895         | 3.0349     | 19.3       |
| 48      | 100        | 4995         | 3.0969     | 19.6       |
| 49      | 100        | 5095         | 3.1589     | 20.0       |

|         |            | Cumulative   | Cumulative | Cumulative |
|---------|------------|--------------|------------|------------|
| Section | Length (m) | Distance (m) | Miles      | Hours      |
| 50      | 100        | 5195         | 3.2209     | 20.3       |
| 51      | 100        | 5295         | 3.2829     | 20.6       |
| 52      | 100        | 5395         | 3.3449     | 21.0       |
| 53      | 100        | 5495         | 3.4069     | 21.2       |
| 54      | 100        | 5595         | 3.4689     | 21.5       |
| 55      | 100        | 5695         | 3.5309     | 21.7       |
| 56      | 100        | 5795         | 3.5929     | 22.1       |
| 57      | 100        | 5895         | 3.6549     | 22.5       |
| 58      | 100        | 5995         | 3.7169     | 22.7       |
| 59      | 100        | 6095         | 3.7789     | 23.0       |
| 60      | 100        | 6195         | 3.8409     | 23.3       |
| 61      | 100        | 6295         | 3.9029     | 23.6       |
| 62      | 100        | 6395         | 3.9649     | 23.8       |
| 63      | 100        | 6495         | 4.0269     | 24.1       |
| 64      | 100        | 6595         | 4.0889     | 24.3       |
| 65      | 100        | 6695         | 4.1509     | 24.6       |
| 66      | 100        | 6795         | 4.2129     | 24.9       |
| 67      | 100        | 6895         | 4.2749     | 25.1       |
| 68      | 100        | 6995         | 4.3369     | 25.3       |
| 69      | 100        | 7095         | 4.3989     | 25.5       |
| 70      | 100        | 7195         | 4.4609     | 25.7       |
| 71      | 100        | 7295         | 4.5229     | 25.9       |
| 72      | 100        | 7395         | 4.5849     | 26.1       |
| 73      | 100        | 7495         | 4.6469     | 26.4       |
| 74      | 100        | 7595         | 4.7089     | 27.1       |
| 75      | 400        | 7995         | 4.9569     | 29.9       |
| 76      | 100        | 8095         | 5.0189     | 30.3       |
| 77      | 100        | 8195         | 5.0809     | 30.6       |
| 78      | 100        | 8295         | 5.1429     | 30.8       |
| 79      | 20         | 8315         | 5.1553     | 30.8       |

**Attachment B.** - Staff and Licensed Applicators. Including staff member(s) name, employer, pesticide applicator license number and assignment per treatment.

| Name                 | Employer | License #                               | Treatment 1 Assignment and/or Section Number | Treatment 2 Assignment and/or Section Number |
|----------------------|----------|-----------------------------------------|----------------------------------------------|----------------------------------------------|
| Jeff Korth           | WDFW     | 39429                                   | Detoxification                               | Detoxification                               |
| Robert Jateff        | WDFW     | 74965                                   | Detoxification                               | -                                            |
| Jon Anderson         | WDFW     | 69176                                   | Detoxification                               | Detoxification                               |
| Randall Osborne      | WDFW     | . 74886                                 | 1 and 2                                      | 31                                           |
| Marc Divens          | WDFW     | 74881                                   | 11 and 12                                    | 4                                            |
| Chris Donley         |          |                                         | Project                                      | Project                                      |
|                      | WDFW     | 65173                                   | Coordinator/Detoxification                   | Coordinator/Detoxification                   |
| Nick Bean            | KNRD     | 76922                                   | 9                                            | -                                            |
| Jason Connor         | KNRD     | 76923                                   | Biological Assessment                        | 28 and 29                                    |
| Todd Andersen        |          | ·                                       |                                              | Backpack                                     |
|                      | KNRD     | 76903                                   | Backpack Sprayer                             | Sprayer/Detoxification                       |
| Ken Merrill          | KNRD     | 76929                                   | 19 and 20                                    | 5                                            |
| Dan McMeekan         | KNRD     | 76904                                   | 3 and 4                                      | 3                                            |
| Joe Maroney          |          |                                         |                                              | Backpack                                     |
|                      | KNRD     | 76928                                   | Backpack Sprayer                             | Sprayer/Detoxification                       |
| Michele Wingert      | KNRD     | 76906                                   | 14                                           | 12 and 13                                    |
| Jason Olson          | KNRD     | 76930                                   | Biological Assessment                        | X                                            |
| Bruce Bolding        | WDFW     |                                         | -                                            | 1 and 2                                      |
| Paul Sieracki        | KNRD     |                                         | -                                            | 6                                            |
| Dan McRae            | KNRD     |                                         | -                                            | 7 and 8                                      |
| Tim Rood             | KNRD     |                                         | 5                                            | 9 and 10                                     |
| Cyrus Rosenthal      | KNRD     |                                         | -                                            | 11                                           |
| Shane Harvey         | KNRD     |                                         | 6                                            | 14                                           |
| Rod Haynes           | KNRD     |                                         | 16 and 17                                    | 15 and 16                                    |
| Louie Andrews        | KNRD     |                                         | 31                                           | 17 and 18                                    |
| Ray Entz             | KNRD     |                                         | -                                            | 19 and 20                                    |
| Jim Lemieux          | KNRD     |                                         | 21                                           | 21 and 22                                    |
| Mike Wilkinson       | WDFW     |                                         | -                                            | 23                                           |
| Wayne Gould          | KNRD     |                                         | •                                            | 24                                           |
| Heather Stiegelmeyer | KNRD     |                                         | 18                                           | 25                                           |
| Chuck Littlecrow     | KNRD     |                                         | Backpack Sprayer                             | 26                                           |
| Sandy Dotts          | WDFW     |                                         | 28                                           | 27                                           |
| Jake Wolfe           | WDFW     |                                         | Detoxification                               | Detoxification                               |
| Bill Baker           | WDFW     |                                         | 22 and 23                                    | Backpack Sprayer                             |
| James Lord           | KNRD     | *************************************** | Backpack Sprayer                             | Backpack Sprayer                             |
| Taj Salmeri          | KNRD     | -                                       | Backpack Sprayer                             | Backpack Sprayer                             |
| Todd Baldwin         | KNRD     |                                         | -                                            | Backpack Sprayer                             |
| Doug Marconi         | KNRD     |                                         | 10                                           | -                                            |
| Jake Streich         | KNRD     | ·                                       | _                                            | Backpack Sprayer                             |
| Mike Holm            | WDFW     |                                         | -                                            | Bio-Assay Support                            |
| Jeff Lombard         | WDFW     |                                         | Bio-Assay Support                            | -                                            |
| Karen Honeycutt      | USFS     |                                         | 15                                           | -                                            |
| Jade Helm            | WDFW     |                                         | 13                                           | **                                           |
| Lawrence Williams    | KNRD     |                                         | 24                                           | -                                            |
| John Easterbrooks    | WDFW     | T                                       | 30                                           |                                              |
| Eric Anderson        | WDFW     |                                         | 7 and 8                                      | -                                            |
| Dave Karl            | WDFW     |                                         | 27                                           |                                              |
| Doug Weidemeir       | WDFW     |                                         | 26                                           |                                              |
| Jeff Lawlor          | WDFW     |                                         | 25                                           | **                                           |
| Bruce Heiner         | WDFW     |                                         | 29                                           |                                              |
| John Pahutski        | WDFW     |                                         |                                              | 30/Detoxification                            |

# Attachment C. – Pre and Post Treatment Fish Population Monitoring

# Cee Cee Ah Creek Westslope Cutthroat Trout Restoration Project Fish Population Assessment

By

# Jason M Connor and Jason Olson Kalispel Tribe Natural Resources Department

# Pre-Implementation Fish Sampling

Prior to rotenone treatment of Cee Cee Ah Creek, the brook trout population was assessed using multiple pass depletion electrofishing techniques (Murphy and Willis 1996, Heimbuch et al. 1997). Daytime electrofishing was conducted on 21 August and 2 September 2008. Eight electrofishing stations were established in the planned treatment reach between Cee Cee Ah Falls and the headwaters. Stations measured between 50-100 m (mean 87.5 m), with block nets set at the upstream and downstream boundaries to prevent immigration and emigration during the sampling period (Zippen 1958).

Stations were distributed throughout the reach to capture the range of habitat conditions present, with the exception of impounded and braided portions of the stream. Backpack electrofishing of extensively braided low gradient channel segments and beaver pond complexes was logistically problematic and could not be closed to im/emigration which violates model assumptions. Therefore, these habitats were avoided. Brook trout density and biomass estimates from the electrofishing survey are considered conservative, given that previously observed fish densities in braided and impounded portions of the reach are consistently higher than locations sampled.

Population estimates were obtained using the MicroFish 2.2 Interactive Program, the interactive version of "Fisheries Population and Statistical Package" (Van Deventer and Platts 1986). The program uses the maximum likelihood population estimation model developed by Dr. Kenneth Burnham of North Carolina State University (Van Deventer and Platts 1985), and Zippin's (1958) removal-depletion strategy assumptions. Fish < 50 mm have been reported to pass through the mesh of our block nets, violating the closure assumption (McLellan and O'Connor 2003), and were excluded from analysis. Two electrofishing passes were completed if the second pass' total was less than 50% of the first. If the second pass' total was greater than 50%, a third pass was completed. Fish densities were calculated by dividing the population estimate by the sample section length and multiplying by 100 to yield #fish/100 m. All brook trout were measured to the nearest millimeter (mm) in total length (TL), and weighed to the nearest gram (g) on an Acculab electronic scale. Brook trout collected electrofishing were permanently removed from Cee Cee Ah Creek.

A total of 463 brook trout over 50 mm and 67 young-of-year (yoy; <50 mm) were collected in the eight electrofishing stations. Density estimates ranged from 38 fish/100 m to 126 fish/100 m and were not correlated to location within the treatment area (Table 1). Mean brook trout density was 74 fish/100 m (CI 66-86 fish/100 m).

Average total lengths of brook trout ranged from 98-131 mm with a pooled mean of 112 mm (Table 2, Figure 1). Average weights ranged from 14-26 g with a pooled mean of 18 g (Table 2).

Table 1. Pre-implementation brook trout electrofishing results with population and density estimates for Cee Cee Ah Creek, 2008.



Table 2. Mean total length and weight estimates including biomass of brook trout captured in Cee Cee Ah Creek prior to Rotenone treatment, 2008.



Prior to the rotenone application, three 450-500 m sampling reaches were established within the treatment area. Lower, middle, and upper reaches were enclosed by block nets 1 day prior to treatment. Block nets were set perpendicular to the stream flow in simple channels (i.e. not braided, impounded, or obstructed) and anchored with rebar stakes and boulders. Immediately prior to treatment, block nets were inspected to ensure closure. During the rotenone application 1-2 passes were made through each reach and all brook trout carcasses were collected, weighed (g), and measured (mm TL). One additional pass was made 1 day following the treatment to collect remaining carcasses before block nets were removed.

In total, 1,097 brook trout >50 mm and 110 YOY brook trout <50 mm were collected in three sampling reaches. Density varied greatly and increased in upstream reaches from 30 fish/100 m (n=137) in the first to 49 fish/100 m (n=243) and 143 fish/100 m (n=717) in reaches 2 and 3, respectively (Table 4). The mean density of brook trout (74 fish/100 m) equaled the electrofishing estimate, although the 95% confidence interval for rotenone was far greater (±151 fish) than electrofishing (±28 fish).

The estimated size of the Cee Cee Ah brook trout population removed with rotenone was 6,733 individuals, calculated by pooling the three reaches and applying that density (75.6 fish/100 m) to the entire treatment area. We chose to pool the data because of high variability in the number of carcasses collected between reaches, small sample size (3 reaches), and the assumption that mortality was complete and 100% of carcasses were accounted for. Taking into account the high variability and calculating the population level based on mean density produces a population estimate of 6,598 fish (CI  $\pm$  13,410). In comparison, the population size estimated from electrofishing was 6,586 individuals (CI 4,094-9,078).

Average total lengths of brook trout ranged from 107-116 mm with a pooled mean of 108 mm (Table 5, Figure 1). Average weights ranged from 15-19 g with a pooled mean of 16 g (Table 5). Brook trout biomass removed from each of the three reaches (from downstream to upstream) was 2.6 Kg, 3.6 Kg, and 11.6 Kg, respectively. The mean biomass density estimate was 12.1 Kg/Km corresponding to a total removal of 107.7 Kg of brook trout in the treatment area. In comparison, electrofishing estimates of biomass ranged from 6.3 Kg/Km to 22.5 Kg/Km with a mean biomass density estimate of 11.6 Kg/Km. Total brook trout biomass present in the treatment area estimated from electrofishing was 103.7 Kg (CI 64.3-143.0 Kg).

Table 4. Summary of post-implementation brook trout collection in Cee Cee Ah Creek, 2008.

|                   |         |         |         | The second secon |
|-------------------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Reach 1 | Reach 2 | Reach 3 | Pooled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Distance (m)      | 450     | 500     | 500     | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| No collected      | 137     | 243     | 717     | 1097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Density (#/100 m) | 30      | 49      | 143     | 75.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table 5. Mean total length and weight estimates including biomass of brook trout collected in Cee Cee Ah Creek following Rotenone treatment, 2008.

| Brook trout   | Reach 1 | Reach 2      | Reach 3  | Pooled |
|---------------|---------|--------------|----------|--------|
|               |         | Total Length |          |        |
| Mean          | 116     | 107          | 107      | 108    |
| Standard dev. | 35      | 27           | 30       | 30     |
| Range         | 174     | 122          | 158      | 174    |
| Minimum       | 50      | 50           | 50       | 50     |
| Maximum       | 224     | 172          | 208      | 224    |
|               |         | Weight       |          |        |
| Mean          | 19      | 15           | 16       | 16     |
| Standard dev. | 18      | 10           | 14       | 14     |
| Range         | 127     | 51           | 99       | 127    |
| Minimum       | 1       | 1            | <b>1</b> | 1      |
| Maximum       | 128     | 52           | 100      | 128    |
| Biomass (Kg)  | 2.63    | 3.61         | 11.62    | 17.86  |
| Kg/Km         | 5.85    | 7.21         | 23.24    | 12.32  |



Figure 1. Length-frequency distribution of brook trout captured electrofishing prior to Rotenone treatment and collected immediately following Rotenone treatment in Cee Cee Ah Creek, 2008.

### **Conclusions**

- Approximately 6,700 brook trout were removed from Cee Cee Ah Creek with rotenone.
- A conservative estimate of brook trout density prior to treatment was 74 fish/100 m.
- Cee Cee Ah creek supported approximately 12 Kg/Km of brook trout prior to treatment.
- Total estimated biomass of brook trout removed from the creek was 108 Kg.
- Multiple pass depletion electrofishing provided relatively accurate estimates of population size, density, and total biomass. Small differences in length frequency distribution and average total lengths and weights are attributed to electrofishing bias toward larger individuals, and the fact that we did not return any brook trout to the creek following electrofishing removal.

### Literature Cited

- Heimbuch, D.G., H.T. Wilson, S. B. Weisberg, J.H. Volstad, and P.F. Kazyak. 1997. Estimating fish abundance in stream surveys by using double-pass removal sampling. Transactions of the American Fisheries Society 126:795-803.
- McLellan, J.G., and D. O'Connor. 2003. 2001 WDFW Annual Report for the Project Resident Fish Stock Status Above Chief Joseph and Grand Coulee Dams. Part I. Baseline assessment of fish species distribution and densities in the Little Spokane River drainage, year 1. Pages 1109-1169 *in*: Connor, J. 2003. Resident Fish Stock Status Above Chief Joseph and Grand Coulee Dams. 2001 Annual Report, Report to Bonneville Power Administration, Project No. 199700400. (BPA Report DOE/BP-00004619-2).
- Murphy, B.R., and D.W. Willis, editors. 1996. Fisheries Techniques, 2<sup>nd</sup> edition. American Fisheries Society, Bethesda, Maryland.
- Van Deventer, J.S. and W.S. Platts. 1986. Microfish Interactive Program. Version 2.2. Computer Software. Microsoft, IBM.
- Van Deventer, J.S. and W.S. Platts. 1985. A computer software system for entering, managing, and analyzing fish capture data from streams. USDA Forest Service research Note INT-352. Intermountain Research Station, Ogden, Utah.
- Zippen, C. 1958. The removal method of population estimation. Journal of Wildlife Management 22:82-90.

### Attachment D. Photographs of Cee Cee Ah Creek Project



California drip can and contents of the treatment packet.



California drip can outlet nozzle and contents of the treatment packet.



Potassium permanganate and sump pump at detoxification Station 1



California drip can and contents of the treatment packet.



California drip can at work. Note: 2 plus feet vertical above stream to maximize flow from can.



Potassium permanganate mixing at top of waterfall at detoxification Station 1



Mixing potassium permanganate into 2.5 percent solution



Permanganate in water downstream of detoxification Station 2



Activities at detoxification Station 2



Bioassay cage downstream of detoxification Station 2

Washington Department of Fish and Wildlife STREAM REHAB PROJECT CCA Creek, Washingtion

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| 8260, µg/L                                 |           | MTH BLK  | LCS      | #1       | MS       | MSD      | RPD    |
|--------------------------------------------|-----------|----------|----------|----------|----------|----------|--------|
| Matrix .                                   | Water     | Water    | Water    | Water    | Water    | Water    | Water  |
|                                            | Reporting |          |          |          |          |          |        |
| Date analyzed                              | Limits    | 10/03/08 | 10/03/08 | 10/03/08 | 10/03/08 | 10/03/08 | (1945) |
| Dichlorodifluoromethane                    | 1.0       | nd       | :        | nd       | *        |          |        |
| Chloromethane                              | 1.0       | nd       |          | nd       |          |          |        |
| Vinyl chloride                             | 0.2       | nd       |          | nd       |          | ,        |        |
| Bromomethane                               | 1,0       | nd       |          | · nd     |          |          |        |
| Chloroethane                               | 1,0       | nd       |          | nd       |          |          |        |
| Trichlorofluoromethane                     | 1.0       | nd       |          | nd       |          |          |        |
| 1.1-Dichloroethene                         | 1.0       | nd       | 143%     | nd       | 147%     | 136%     | 7.8%   |
| Methylene chloride                         | 1.0       | nd       |          | nd       |          |          |        |
| trans-1,2-Dichloroethene                   | 1.0       | nd       |          | nd       |          |          |        |
| 1,1-Dichloroethane                         | 1,0       | nd       |          | nd       |          |          |        |
| cis-1,2-Dichloroethene                     | 1.0       | nd       |          | nd       |          |          |        |
| 2,2-Dichloropropane                        | 1.0       | nd       |          | nd       |          |          |        |
| Chloroform                                 | 1.0       | nd       |          | nd       |          |          |        |
| Bromochloromethane                         | 1.0       | nd       |          | nd       |          |          |        |
| 1,1,1-Trichloroethane                      | 1.0       | nd       |          | nd ·     |          |          |        |
| 1,2-Dichloroethane                         | 1,0       | . nd     |          | nd       |          |          |        |
| 1,1-Dichloropropene                        | 1.0       | nd       |          | nd       |          |          |        |
| Carbon tetrachloride                       | 1.0       | nd       |          | nd       |          |          |        |
| Benzene                                    | 1.0       | nd       | 96%      | nd       | 96%      | 135%     | 26%    |
| Trichloroethene                            | 1.0       | nd       | 96%      | nd       | 88%      | 122%     | 32%    |
| 1,2-Dichloropropane                        | 1.0       | nd       |          | nd       |          |          |        |
| Dibromomethane                             | 1,0       | nd       |          | nd       |          |          |        |
| Bromodichloromethane                       | 1.0       | nd       |          | nd       |          |          |        |
| *                                          | 1,0       | nd       |          | nd       |          |          |        |
| cls-1,3-Dichloropropene<br><i>Tolue</i> ne | 1.0       | nd       | 130%     | nd       | 85%      | 114%     | 299    |
| trans-1,3-Dichloropropene                  | 1.0       | nd       |          | nd       |          | ***      |        |
| 1,1,2-Trichloroethane                      | 1.0       | nd       |          | nd       |          |          |        |
| 1,1,2-monoroemane                          | 1.0       | nd       |          | nd       |          |          |        |
| Dibromochloromethane                       | 1.0       | nd       | 1        | nd       |          |          |        |
|                                            | 1.0       | ndi      |          | \ nd     |          |          |        |
| Tetrachioroethene                          | 0.01      | nd       |          | nd       |          |          |        |
| 1,2-Dibromoethane (EDB)(*)                 | 1,0       | nd       | 94%      | nd       | 96%      | 128%     | 29%    |
| Chlorobenzene                              | 1.0       | ndi      | 0170     | nd       |          |          |        |
| 1,1,1,2-Tetrachloroethane                  | 1,0       | nd<br>nd |          | nd       |          |          |        |
| Ethylbenzene                               | 1,0       | nd       |          | nd       |          | •        |        |
| Xylenes                                    | 1.0       | nd       |          | nd       | •        |          |        |
| Styrene                                    | 1.0       | nd       |          | nd       |          |          |        |
| Bromoform                                  | 1,0       | nd       |          | nd       |          |          |        |
| 1,1,2,2-Tetrachloroethane                  | 1.0       | nd       |          | nd       |          |          |        |
| Isopropylbenzene                           | 1.0       | nd       |          | nd       |          |          |        |
| 1,2,3-Trichloropropane                     | 1.0       | nd       |          | nd       |          |          |        |
| Bromobenzene                               |           |          |          | nd       |          |          |        |
| n-Propylbenzene                            | 1.0       | nd       |          | nd       |          |          |        |
| 2-Chiorotoluene                            | 1,0       | nd<br>nd |          | nd       |          |          |        |
| 4-Chiorotoluene                            | 1.0       |          |          | nd       |          |          |        |
| 1,3,5-Trimethylbenzene                     | 1.0       | nd<br>nd |          | nd       |          |          |        |
| tert-Butylbenzene                          | 1,0       | nd<br>nd |          | nd       |          |          |        |
| 1,2,4-Trimethylbenzene                     | 1.0       | nd       |          | nd       |          |          |        |
| sec-Butylbenzene                           | 1.0       | nd       |          |          |          |          |        |
| 1,3-Dichlorobenzene                        | 1,0       | nd       |          | nd<br>nd |          |          |        |
| 1,4-Dichlorobenzene                        | 1.0       | nd       |          | nd       |          |          |        |
| Isopropyltoluene                           | 1.0       | nd       |          | nd       |          |          |        |
| 1,2-Dichlorobenzene                        | 1.0       | nd .     |          | nd<br>d  |          |          |        |
| n-Butylbenzene                             | 1.0       | nd       |          | nd       |          |          |        |
| 1,2-Dibromo-3-Chloropropane                | 1.0       | nd       |          | nd       | •        |          |        |
| 1,2,4-Trichlorobenzene                     | 1.0       | nd       |          | nd       |          |          |        |
| Naphthalene                                | 1.0       | nd       |          | nd       |          |          |        |
| Hexachloro-1,3-butadiene                   | 1.0       | nd       |          | nd       |          |          |        |
| 1,2,3-Trichlorobenzene                     | 1.0       | nd       |          | nd       | •        |          |        |

Washington Department of Fish and Wildlife STREAM REHAB PROJECT CCA Creek, Washingtion

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| 8260, μg/L           | ,         | MTH BLK  | LCS      | #1       | MS                                    | MSD      | RPD   |
|----------------------|-----------|----------|----------|----------|---------------------------------------|----------|-------|
| Matrix               | Water     | Water    | Water    | Water    | Water                                 | Water    | Water |
| iii                  | Reporting |          |          |          | · · · · · · · · · · · · · · · · · · · |          |       |
| Date analyzed        | Limits    | 10/03/08 | 10/03/08 | 10/03/08 | 10/03/08                              | 10/03/08 |       |
|                      |           |          |          | •        |                                       |          |       |
| Surrogate recoveries |           |          |          |          | *                                     |          |       |
| Dibromolluoromethane |           | 116%     | 113%     | 125%     | 113%                                  | 119%     |       |
| Toluene-d8           |           | 98%      | 103%     | 95%      | 102%                                  | 101%     |       |
| 4-Bromofluorobenzene |           | 105%     | 107%     | 104%     | 106%                                  | 101%     |       |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

### ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

\$80930.1

Client:

WDFW

Client Job Name:

Stream Rehab

| Analytical Results<br>8270, µg/L      |           | MTH BLK  | LCS      | #1       | MS       | MSD      | RPD  |
|---------------------------------------|-----------|----------|----------|----------|----------|----------|------|
| Matrix                                | Water     | Water    | Water    | Water    | Water    | Water    |      |
| Date extracted                        | Reporting | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 |      |
| Date analyzed                         | Limits    | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 |      |
|                                       |           |          |          |          |          |          |      |
| Pyridine                              | 2.0       | nd       |          | nd       |          |          |      |
| Aniline                               | 2.0       | nd       |          | nd       |          |          |      |
| Phenol                                | 2.0       | nd       |          | nd       | 88%      | 92%      | 4%   |
| 2-Chlorophenol                        | 2.0       | nd       |          | nd       | 99%      | 113%     | 13%  |
| Bis (2-chloroethyl) ether             | 2.0       | nd       |          | nd       |          |          |      |
| 1,3-Dichlorobenzene                   | 2.0       | nd       |          | nd       |          |          |      |
| 1,4-Dichlorobenzene                   | 2.0       | nd       | 121%     | nd       | 102%     | 101%     | 1%   |
| 1,2-Dichlorobenzene                   | 2.0       | nd       |          | nd       |          |          |      |
| N-methylpyrrolidone                   | 2.0       | nd       |          | nd       |          |          |      |
| Benzyl alcohol                        | 2.0       | nd       |          | nd       |          |          |      |
| 2-Methylphenol (o-cresol)             | 2.0       | nd       |          | nd       |          |          |      |
| Bis (2-chloroisopropyl) ether         | 10.0      | nd       |          | nd       |          |          |      |
| 3,4-Methylphenol (m,p-cresol)         | 2.0       | · nd     | •        | nd       |          |          |      |
| Hexacholorethane                      | 2.0       | nd       |          | nd       |          |          |      |
| N-Nitroso-di-n-propylamine            | 2.0       | nd       |          | nd       | 119%     | 118%     | 19   |
| Nitrobenzene                          | 2.0       | nd       |          | nd       |          |          |      |
| Isophorone                            | 2.0       | nd "     |          | nd       |          |          |      |
| 2-Nitrophenol                         | 10.0      | nd       |          | nd       |          |          |      |
| 4-Nitrophenol                         | 10.0      | nd       |          | nd       |          |          |      |
| 2,4-Dimethylphenol                    | 2.0       | nd       |          | nd       | 100%     | 104%     | 49   |
| Bis (2-chloroethoxy) methane          | 2.0       | nd       |          | nd       |          |          |      |
| 2,4-Dichlorophenol                    | 10.0      | nd       |          | nd       |          |          |      |
| 1,2,4-Trichlorobenzene                | 2.0       | nd       |          | nd       | 121%     | 118%     | 3%   |
| Naphthalene                           | 2.0       | nd       |          | nd       |          |          |      |
| 4-Chloroaniline                       | 10.0      | nd       | •        | nd       |          |          |      |
| 4-Chlorodamine<br>Hexachlorobutadiene | 2.0       | nd       | 132%     | nd       |          |          |      |
| · ·                                   | 10.0      | nd       |          | nd       | 77%      | 80%      | 49   |
| 4-Chloro-3-methylphenol               | 2.0       | nd       |          | nd       |          |          |      |
| 2-Methylnapthalene                    | 2.0       | nd       |          | · nd     | i        |          |      |
| 1-Methylnapthalene                    | 2.0       | nd       |          | nd       |          |          |      |
| Hexachlorocyclopentadiene             | 10.0      | nd       |          | nd       |          |          |      |
| 2,4,6-Trichlorophenol                 | 10.0      | nd       |          | nd       |          |          |      |
| 2,4,5-Trichlorophenol                 | 2.0       | nd       |          | nd       |          |          |      |
| 2-Chloronaphthalene                   |           |          |          | nd       |          |          |      |
| 2-Nitroaniline                        | 10.0      | nd       |          | nd       |          |          |      |
| 1,4-Dinitrobenzene                    | 10.0      | nd       |          | nd       |          |          |      |
| Dimethylphthalate                     | 2.0       | nd       |          |          |          |          |      |
| Acenaphthylene                        | 0.2       | nd       | *        | nd       |          |          |      |
| 1,3-Dinotrobenzene                    | 10.0      | nd .     |          | nd       |          |          |      |
| 2,6-Dinitrotoluene                    | 2.0       | nd       |          | nd<br>d  |          |          | 1    |
| 1,2-Dinitrobenzene                    | 2.0       | nd       |          | nd       | 0007     | . 000/   | . 19 |
| Acenaphthene                          | 0.2       | nd       | 110%     | nd       | 98%      | 99%      | . 17 |
| 3-Nitroaniline                        | 10.0      | nd       |          | nd       |          |          |      |
| Dibenzofuran                          | 2.0       | nd       |          | nd       | ****     | 2001     | ~    |
| 2,4-Dinitrotoluene                    | 2.0       | nd       |          | nd       | 86%      | 88%      | 29   |
| 2,3,4,6-Tetrachlorophenol             | 2.0       | nd       |          | nd       |          |          |      |
| 2,3,5,6-Tetrachlorophenol             | 2.0       | nd       |          | nd       |          |          |      |
| 2,4-Dinitrophenol                     | 10.0      | nd       |          | nd       |          |          | •    |
| Fluorene                              | 0.2       | nd       |          | nd       |          |          | i .  |

### ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

\$80930.1

Client:

WDFW

Client Job Name:

Stream Rehab

**Analytical Results** 

| 8270, μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | MTH BLK  | LCS      | #1       | MS       | MSD      | RPD |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water     | Water    | Water    | Water    | Water    | Water    | ,   |
| Date extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reporting | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 |     |
| Date analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits    | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 | 09/30/08 |     |
| 4-Chlorophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd       |          | nd       |          |          |     |
| Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0       | nd       |          | nd       |          |          |     |
| 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0      | nd       |          | nd       |          |          |     |
| 4,6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0      | nd       |          | nd       |          |          |     |
| N-nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0       | nd       | 113%     | nd       |          |          | *   |
| Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0       | nd       |          | , nd     |          |          |     |
| 4-Bromophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0       | nd       |          | nd       |          |          |     |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0      | nd       | ٠        | nd       |          |          |     |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2       | nd       |          | nd       |          |          |     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2       | nd       |          | nd       |          |          | *   |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0       | nd       |          | nd       |          |          |     |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2       | nd       | 116%     | nd       |          |          |     |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2       | nd       |          | nd       | 93%      | 95%      | 2%  |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0       | nd       |          | nd       |          |          |     |
| Bis(2-ethylhexyl) adipate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd       |          | nd       |          |          |     |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2       | nd       |          | nd       |          |          |     |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2       | nd       |          | nd       |          |          |     |
| Bis (2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0       | nd       | 71%      | nd       |          |          |     |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2       | · nd     | 75%      | rid      |          | •        |     |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2       | nd       |          | กd       |          |          |     |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2       | nd       |          | nd       | ***      |          |     |
| The state of the s |           | ent Auto |          |          |          |          | ,   |
| Surrogate recoveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |          |          |          |          |     |
| 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 98%      | 113%     | 124%     | 89%      | 89%      |     |
| Phenol-d6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 102%     | 118%     | 125%     | 94%      | 93%      |     |
| Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 111%     | 123%     | 86%      | 90%      | 89%      |     |
| 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *         | 90%      | 128%     | 80%      | 86%      | 85%      |     |
| 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 67%      | 77%      | 76%      | 84%      | 87%      |     |
| 4-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 92%      | 118%     | 78%      | 86%      | 84%      |     |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

**ESN NORTHWEST** 

Address:

1210 EASTSIDE STREET SE

OLYMPIA, WA 98501

Attn:

STEPHEN J LOAGUE

Batch #:

080916043

**Project Name:** 

**CCA CREEK** 

### **Analytical Results Report**

Sample Number

080916043-001

Sampling Date

9/11/2008 11:55 AM

Date/Time Received

9/16/2008

11:30 AM

Client Sample ID Matrix

#2 Water Sampling Time Sample Location **Extraction Date** 

9/26/08

Comments

Units

PQL

Analysis Date Analyst

Method

Qualifier

**Parameter** Rotenone

Result

John. Coult

ug/L

0.1 9/26/2008 TGT

EPA 8321A

Authorized Signature

MCL

**EPA's Maximum Contaminant Level** 

ND

Not Detected

PQL

**Practical Quantitation Limit** 

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

Monday, September 29, 2008

Page 1 of 1

|   | e e        |    |   |
|---|------------|----|---|
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            | •  |   |
| , |            |    |   |
|   |            | .• |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   | •          |    |   |
|   |            |    | • |
|   |            | •  |   |
|   |            |    |   |
|   | •          |    |   |
| • |            |    |   |
|   |            |    |   |
|   | •          |    |   |
|   |            |    |   |
|   | •          |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
| · |            |    |   |
|   | . <b>u</b> |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
| · |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            |    |   |
|   |            | 4. | · |
|   |            |    |   |
|   |            | ·  |   |
|   |            |    |   |

# ESN NORTHWEST CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

Client: Client Job Name: Washington Department of Fish and Wildlife CCA Creek

Analytical Results

| 8260, μg/L                                 | Water            | MTH BLK           | LCS               | CCA Creek      | MS                | MSD               | RPI   |
|--------------------------------------------|------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------|
| Matrix Date analyzed                       | vvater<br>Limits | Water<br>09/18/08 | Water<br>09/18/08 | Water 09/18/08 | Water<br>09/18/08 | Water<br>09/18/08 |       |
| Date dilayzed                              |                  |                   | 00/10/00          | - COTTO/CO     | CONTONO           | 02910/02          | ····· |
| Dichlorodifluoromethane                    | 1.0              | nd                |                   | nd             |                   |                   |       |
| Chloromethane                              | 1.0              | nd                |                   | nd             |                   |                   |       |
| Vinyl chloride                             | 0.2              | nd                |                   | nd             |                   |                   |       |
| Bromomethane                               | 1.0              | - nd              |                   | nd             |                   |                   |       |
| Chloroethane                               | 1,0              | nd                |                   | nd             |                   |                   |       |
| Trichlorofluoromethane                     | 1.0              | nd                |                   | nd             |                   |                   |       |
| Acetone                                    | 10.0             | nd                |                   | nd             |                   |                   |       |
| 1,1-Dichloroethene                         | 1.0              | . nd              | 108%              | nd             | 110%              | 108%              | 29    |
| Methylene chloride                         | 10,0             | nd                |                   | nd             |                   |                   |       |
| Methyl-t-butyl ether (MTBE)                | 1.0              | nd<br>t           |                   | nd             |                   |                   |       |
| trans-1,2-Dichloroethene                   | 1.0<br>1,0       | nd<br>nd          |                   | nd             |                   |                   |       |
| 1,1-Dichloroethane<br>n-Hexane             |                  |                   |                   | nd             |                   |                   |       |
|                                            | 1,0<br>10.0      | nd<br>nd          |                   | nd<br>nd       |                   |                   |       |
| 2-Butanone (MEK)<br>cis-1,2-Dichloroethene | 1,0              | nd                |                   | nd             |                   |                   |       |
| 2,2-Dichloropropane                        | 1.0              | nd                | 4                 | nd             |                   |                   |       |
| Chloroform .                               | 1.0              | . nd              |                   | nd             |                   |                   |       |
| Bromochloromethane                         | 1:0              | nd                |                   | nd             |                   |                   |       |
| 1,1,1-Trichloroethane                      | 1.0              | nd                |                   | nd .           |                   |                   |       |
| 1,2-Dichloroethane (EDC)                   | 1.0              | nd                |                   | nd             |                   |                   |       |
| 1,1-Dichloropropene                        | 1,0              | nd                |                   | nd             |                   |                   |       |
| Carbon tetrachloride                       | 1.0              | nd                |                   | nd             |                   |                   |       |
| Benzene                                    | 1.0              | nd                | 108%              | nd             | 107%              | 107%              | 0%    |
| Trichloroethene (TCE)                      | 1.0              | nd                | 107%              | nd             | 107%              | 106%              | 1%    |
| 1,2-Dichloropropane                        | 1.0              | nd                | 107.15            | nd             | 107 10            | 10074             | 1 /4  |
| Dibromomethane                             | 1,0              | nd                |                   | nd             |                   |                   |       |
| Bromodichloromethane                       | 1.0              | nd                |                   | nd             |                   |                   |       |
| 4-Methyl-2-pentanone (MIBK)                | 1,0              | nd                |                   | nd             |                   |                   |       |
| sis-1,3-Dichloropropene                    | 1,0              | nd                |                   | nd             |                   |                   |       |
| Toluene                                    | 1.0              | nd                | 106%              | nd             | 109%              | 109%              | 0%    |
| rans-1,3-Dichloropropene                   | 1.0              | nd                |                   | nd             |                   |                   |       |
| ,1,2-Trichloroethane                       | 1.0              | nd                |                   | nd             |                   |                   |       |
| 2-Hexanone                                 | 1,0              | nd                |                   | nd             |                   |                   |       |
| I,3-Dichloropropane                        | 1.0              | nd                |                   | nd             |                   |                   |       |
| Dibromochloromethane                       | 1.0              | nđ                |                   | nd             |                   |                   |       |
| etrachloroethene (PCE)                     | 1.0              | nd                |                   | nd             |                   |                   |       |
| ,2-Dibromoethane (EDB)                     | 0.10             | nd                |                   | nd             |                   |                   |       |
| Chlorobenzene                              | 1,0              | . nd              | 111%              | nd             | 114%              | 111%              | 3%    |
| ,1,1,2-Tetrachioroethane                   | 1,0              | nd                |                   | nd             |                   |                   |       |
| Sthylbenzene                               | -1,0             | nd                |                   | nd             |                   |                   |       |
| (ylenes                                    | 1.0              | nd                |                   | nd             |                   |                   |       |
| Styrene                                    | 1.0              | nd                |                   | nd             | ·                 |                   |       |
| fromoform                                  | 1,0              | nd                |                   | nd             |                   |                   |       |
| ,1,2,2-Tetrachloroethane                   | 1.0              | nd                |                   | nd ·           |                   |                   |       |
| sopropylbenzene                            | 1,0              | nd                |                   | · nd           |                   |                   |       |
| ,2,3-Trichloropropane                      | 1.0              | nd                |                   | 'nd            |                   |                   |       |
| romobenzene                                | 1.0              | nd                |                   | nd             |                   |                   |       |
| -Propylbenzene                             | 1.0              | nd                |                   | nd             |                   |                   |       |
| -Chlorotoluene                             | 1,0              | nd                |                   | nd             |                   |                   |       |
| -Chlorotoluene                             | 1.0              | nd                |                   | nd             |                   |                   |       |
| 3,5-Trimethylbenzene                       | 1.0              | nd                |                   | · nd           |                   |                   |       |
| rt-Butylbenzene                            | 1,0              | nd                |                   | nd             |                   |                   |       |
| 2,4-Trimethylbenzene                       | 1,0              | nd                |                   | nd             |                   |                   |       |
| ec-Butylbenzene                            | 1,0              | nd                |                   | nd             |                   |                   |       |
| 3-Dichlorobenzene                          | 1.0              | nd                |                   | nd             |                   |                   |       |
| 4-Dichlorobenzene                          | 1,0              | лđ                |                   | nd             |                   |                   |       |
| opropyltoluene                             | 1.0              | nd                |                   | nd             |                   |                   |       |
| 2-Dichlorobenzene                          | 1.0              | nd                |                   | · nd           |                   |                   |       |
| Butylbenzene                               | 1.0              | nd                |                   | nd             |                   |                   |       |
| 2-Dibromo-3-Chloropropane                  | 1,0              | nd                |                   | nd             |                   |                   |       |
| 2,4-Trichlorobenzene                       | 1,0              | nd                |                   | nd             |                   |                   |       |
| aphthalene                                 | 1.0              | nd                |                   | nd             |                   |                   |       |
| exachloro-1,3-butadiene                    | 1.0              | nđ                |                   | nd             |                   |                   |       |
| 2,3-Trichlorobenzene                       | 1.0              | . nd              |                   | nd nd          |                   |                   |       |

## ESN NORTHWEST CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

Client Client Job Name: Washington Department of Fish and Wildlife CCA Creek

### Analytical Results

|                       | 0 04 1 | manager to the same of the second of the |          |           | · · · · · · · · · · · · · · · · · · · |                    |       |  |  |
|-----------------------|--------|------------------------------------------|----------|-----------|---------------------------------------|--------------------|-------|--|--|
| 8260, µg/L            |        | MTH BLK                                  | LCS      | CCA Creek | MS                                    | MSD                | RPD   |  |  |
| Matrix                | Water  | Water                                    | Water    | Water     | Water                                 | Water              |       |  |  |
| Date analyzed         | Limits | 09/18/08                                 | 09/18/08 | 09/18/08  | 09/18/08                              | 09/18/08           | ····  |  |  |
|                       |        |                                          |          |           |                                       | · Mayoroport Bally | 7 127 |  |  |
| Surrogate recoveries: |        |                                          |          |           |                                       |                    |       |  |  |
| Dibromofluoromethane  |        | 131%                                     | 127%     | 127%      | 125%                                  | 127%               | ····  |  |  |
| Toluene d8            |        | 103%                                     | 103%     | 101%      | 103%                                  | 103%               |       |  |  |
| 4-Bromofluorobenzene  |        | 96%                                      | 96%      | 91%       | 96%                                   | 97%                |       |  |  |

Data Qualifiers and Analytical Comments
nd - not detected at listed reporting limits
J - estimated quantitation, below listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

Tel.(425) 957-9872, Fax: (425) 957-9904

Client

Washington Department of Fish and Wildlife

Client Job Name:

CCA Creek

Analytical Results

| 8270, μg/L                   |            | MTH BLK            | LCS      | #1       | MS       | MSD      | RPD                                     |
|------------------------------|------------|--------------------|----------|----------|----------|----------|-----------------------------------------|
| Matrix                       | Water      | Water              | Water    | Water    | Water    | Water    | *************************************** |
| Date extracted               | Reporting  | 09/17/08           | 09/17/08 | 09/17/08 | 09/17/08 | 09/17/08 | •                                       |
| Date analyzed                | Limits     | 09/17/08           | 09/17/08 | 09/17/08 | 09/17/08 | 09/17/08 |                                         |
| 4-Chlorophenylphenylether    | 2.0        | nd                 | •        | nd       |          |          |                                         |
| Diethylphthalate             | 2.0        | nd                 |          | nd       |          |          |                                         |
| 4-Nitroaniline               | 10.0       | nd                 |          | nd       |          |          |                                         |
| 4,6-Dinitro-2-methylphenol   | 10.0       | nd                 |          | nd       |          |          |                                         |
| N-nitrosodiphenylamine       | 2.0        | nd                 | 96%      | nd       |          |          |                                         |
| Azobenzene                   | 2.0        | nd                 | **       | nd       |          | *        |                                         |
| 4-Bromophenylphenylether     | 2.0        | nd                 | ,        | nd       |          |          |                                         |
| Hexachlorobenzene            | 2.0        | nd                 |          | nd       |          |          |                                         |
| Pentachlorophenol            | 10.0       | nd                 |          | nd       |          |          |                                         |
| Phenanthrene                 | 0.2        | nd                 |          | nd       |          |          |                                         |
| Anthracene                   | 0.2        | nd                 | 4        | nd       |          |          |                                         |
| Carbazole                    | 2.0        | nd                 | :        | nd       |          |          |                                         |
| Di-n-butylphthalate          | 2.0        | nd                 |          | nd       |          |          |                                         |
| Fluoranthene                 | 0.2        | nd                 | 130%     | nd       |          |          |                                         |
| Pyrene                       | . 0.2      | nd                 |          | nd       | 95%      | 98%      | 3%                                      |
| Butylbenzylphthalate         | 2.0        | nd                 |          | nd       |          |          |                                         |
| Bis(2-ethylhexyl) adipate    | 2.0        | nd                 |          | nd       |          |          |                                         |
| Benzo(a)anthracene           | 0.2        | nd                 | •        | nd       |          | -        |                                         |
| Chrysene                     | 0.2        | nd                 |          | nd       |          |          |                                         |
| Bis (2-ethylhexyl) phthalate | 2.0        | nd                 |          | nd       |          |          |                                         |
| Di-n-octyl phthalate         | 2.0        | nd                 | 70%      | nd       |          |          |                                         |
| Benzo(b)fluoranthene         | 0.2        | nd                 |          | nd       |          |          |                                         |
| Benzo(k)fluoranthene         | <b>0.2</b> | nd                 |          | nd       | *        |          |                                         |
| Benzo(a)pyrene               | 0.2        | nd                 | 83%      | nd       |          |          |                                         |
| Dibenzo(a,h)anthracene       | 0.2        | nd                 |          | nd       |          |          |                                         |
| Benzo(ghi)perylene           | 0.2        | nd                 |          | nd       |          |          |                                         |
| Indeno(1,2,3-cd)pyrene       | 0.2        | nd                 |          | nd       |          |          |                                         |
|                              |            | THE RESERVE OF THE |          |          | ·        |          | ······································  |
| Surrogate recoveries         |            |                    |          |          |          |          |                                         |
| 2-Fluorophenol               |            | 101%               | 114%     | 128%     | 89%      | 89%      |                                         |
| Phenol-d6                    |            | 103%               | 119%     | 134%     | 94%      | 94%      | •                                       |
| Nitrobenzene-d5              |            | 113%               | 119%     | 105%     | 92%      | 90%      |                                         |
| 2-Fluorobiphenyl             |            | 90%                | 130%     | 98%      | 86%      | 86%      |                                         |
| 2,4,6-Tribromophenol         |            | 66%                | 87%      | 73%      | 83%      | 86%      |                                         |
| 4-Terphenyl-d14              | ,          | 94%                | 114%     | 94%      | 87%      | 86%      | *                                       |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits:

2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

### ESN NORTHWEST CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

Client:

Washington Department of Fish and Wildlife

Client Job Name:

CCA Creek

Analytical Results

| 8270, µg/L                                    |            | MTH BLK   | LCS      | #1       | MS       | MSD      | RPD |
|-----------------------------------------------|------------|-----------|----------|----------|----------|----------|-----|
| Matrix                                        | Water      | Water     | Water    | Water    | Water    | Water    |     |
| Date extracted                                | Reporting  | 09/17/08  | 09/17/08 | 09/17/08 | 09/17/08 | 09/17/08 |     |
| Date analyzed                                 | Limits     | 09/17/08  | 09/17/08 | 09/17/08 | 09/17/08 | 09/17/08 |     |
| Pyridine                                      | 2.0        | nd        |          |          |          | •        |     |
| Aniline                                       | 2.0        |           |          | , nd     |          |          |     |
| Phenol                                        | 2.0        | nd        |          | nd       | 0001     | 0001     |     |
| ·                                             |            | nd<br>- d |          | nd       | 88%      | 93%      | 6%  |
| 2-Chlorophenol                                | 2.0<br>2.0 | nd        |          | nd       | 109%     | 105%     | 4%  |
| Bis (2-chloroethyl) ether 1,3-Dichlorobenzene |            | nd        |          | nd       |          |          | •   |
| •                                             | 2.0        | nd        | 0001     | nd       | 4000     |          |     |
| 1,4-Dichlorobenzene 1,2-Dichlorobenzene       | 2.0        | nd<br>    | 92%      | nd       | 103%     | 102%     | 1%  |
|                                               | 2.0        | nd        |          | nd       |          |          |     |
| Benzyl alcohol                                | 2.0        | nd<br>'   |          | nd '     |          |          |     |
| 2-Methylphenol (o-cresol)                     | 2.0        | nd<br>    |          | nd       |          |          |     |
| Bis (2-chloroisopropyl) ether                 | 10,0       | nd        |          | nd       |          |          |     |
| 3,4-Methylphenol (m,p-cresol)                 | 2.0        | nd        |          | nd       |          |          |     |
| Hexacholorethane                              | 2.0        | ind       |          | nd       | `        |          |     |
| N-Nitroso-di-n-propylamine                    | 2.0        | ņd        |          | nd       | 122%     | 122%     | 0%  |
| Nitrobenzene                                  | 2.0        | nd        |          | nd       |          |          |     |
| Isophorone                                    | 2.0        | nd        |          | nd       |          |          |     |
| 2-Nitrophenol                                 | 10.0       | nd        |          | nd       |          |          |     |
| 4-Nitrophenol                                 | 10.0       | nd        |          | nd       |          |          |     |
| 2,4-Dimethylphenol                            | 2.0        | nd        |          | nd       | 100%     | 105%     | 5%  |
| Bis (2-chloroethoxy) methane                  | 2.0        | nd        |          | nd       |          |          |     |
| 2,4-Dichlorophenol                            | 10.0       | nd        |          | nd       |          |          |     |
| 1,2,4-Trichlorobenzene                        | 2.0        | nd        |          | nd       | 121%     | 119%     | 2%  |
| Naphthalene                                   | 2.0        | nd        |          | . nd     |          |          |     |
| 4-Chloroaniline                               | 10.0       | nd        | •        | nd .     |          |          |     |
| Hexachlorobutadiene                           | 2.0        | nd        | 131%     | - nd     |          |          |     |
| 4-Chloro-3-methylphenol                       | 10.0       | nd        |          | nd       | 77%      | 82%      | 6%  |
| 2-Methylnapthalene                            | 2.0        | nd        |          | nd       |          |          |     |
| 1-Methylnapthalene                            | 2.0        | nd        |          | nd       |          |          |     |
| Hexachlorocyclopentadiene                     | 2.0        | nd        |          | nd       |          |          |     |
| 2,4,6-Trichlorophenol                         | 10.0       | · nd      |          | nd       |          |          |     |
| 2,4,5-Trichlorophenol                         | 10.0       | nd        |          | nd       |          |          |     |
| 2-Chloronaphthalene                           | 2.0        | nd        |          | nd       |          |          |     |
| 2-Nitroaniline                                | 10.0       | nd        |          | nd       |          |          |     |
| 1,4-Dinitrobenzene                            | 10.0       | ` nd      |          | nd       |          |          |     |
| Dimethylphthalate                             | 2.0        | nd        |          | nd       | •        |          |     |
| Acenaphthylene                                | 0.2        | nd        |          | nd       |          |          |     |
| 1,3-Dinotrobenzene                            | 10.0       | nd        | •        | nd       |          | •        |     |
| 2,6-Dinitrotoluene                            | 2.0        | nd        |          | nd       |          |          |     |
| 1,2-Dinitrobenzene                            | 2.0        | nd        | •        | nd       | * .      |          |     |
| Acenaphthene                                  | 0.2        | nd        | 121%     | nd       | 97%      | . 99%    | 2%  |
| 3-Nitroaniline                                | 10.0       | nd        |          | nd       |          |          |     |
| Dibenzofuran                                  | 2.0        | nd        |          | nd       |          |          | •   |
| 2,4-Dinitrotoluene                            | 2.0        | nd        |          | nd       | 87%      | 87%      | 0%  |
| 2,3,4,6-Tetrachlorophenol                     | 2.0        | nd        |          | nd       |          | ;-       |     |
| 2,3,5,6-Tetrachlorophenol                     | 2.0        | nd        |          | nd       |          |          |     |
| 2,4-Dinitrophenol                             | 10.0       | nd        |          | nd       |          |          |     |
| Fluorene                                      | 0.2        | nd        |          | nd       |          |          | •   |

# Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

**ESN NORTHWEST** 

Address:

1210 EASTSIDE STREET SE

OLYMPIA, WA 98501

Attn:

STEPHEN J LOAGUE

Batch #:

080930054

**Project Name:** 

WA DEPT FISH +

WILDLIFE STREAM

**REHAB** 

### **Analytical Results Report**

Sample Number

080930054-001

Sampling Date

9/24/2008

Date/Time Received

9/30/2008

10:30 AM

Client Sample ID

ROTENONE

Water

Sampling Time

1:00 PM

Matrix Comments

> **Parameter** Rotenone

Result 5.18

oln. Cott

Units ug/L

5 10/6/2008

Analysis Date Analyst TGT

Method **EPA 8321A**  Qualifier

**Authorized Signature** 

MCL

**EPA's Maximum Contaminant Level** 

ND

Not Detected

Tuesday. October 07. 2008

PQL

**Practical Quantitation Limit** 

Certifications held by Anelek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anetek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

Page 1 of 1

| •                                       |     |   |
|-----------------------------------------|-----|---|
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
| * · · · · · · · · · · · · · · · · · · · |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     |   |
|                                         |     | · |
|                                         |     |   |
| •                                       | · . |   |
| •                                       |     |   |

Washington Department of Fish & Wildlife CCA CREEK REHAB PROJECT Pend Oreille County, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| Date analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analytical Results        |           |          |          |          |         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|----------|----------|----------|---------|-----|
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8260B, µg/L (Water)       | Reporting | MB       | LCS      | LCSD     |         |     |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date analyzed             | Limits    | 03/12/09 | 03/12/09 | 03/12/09 | 03/13/0 | 19  |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dichlorodifluoromethane   | 1.0       | nd       |          |          |         | . d |
| Vinyl chloride         0.2         nd         nd         nd           Bromomethane         1.0         nd         nd         nd           Chloroethane         1.0         nd         nd         nd           Trichlorofluoromethane         1.0         nd         nd         nd           Acetone         10.0         nd         112%         123%         nd           Methylene chloride         1.0         nd         112%         123%         nd           Methylene chloride         1.0         nd         112%         123%         nd           Methylene chloride         1.0         nd         nd         nd         nd         nd           Methylene chloride         1.0         nd                                                                                              |                           |           |          |          |          |         |     |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |           |          |          |          |         | _   |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |           |          |          |          |         |     |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |           |          |          |          |         |     |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |           |          |          |          | -       |     |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | ,         |          |          |          |         |     |
| Methylene chloride         1.0         nd         nd           Methyl-t-butyl ether (MTBE)         1.0         nd         nd         nd           trans-1,2-Dichloroethene         1.0         nd         nd         nd           1,1-Dichloroethane         1.0         nd         nd         nd           2-Butanone (MEK)         10.0         nd         nd         nd           2,2-Dichloroptorene         1.0         nd         nd         nd           Bromochloromethane         1.0         nd         nd         nd           Bromochloromethane         1.0         nd         nd         nd           1,1-Trichloroethane         1.0         nd         nd         nd           1,1-Dichloropropene         1.0         nd         nd         nd           1,1-Dichloropropene         1.0         nd         94%         106%         nd           Benzene         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         104         nd           1,3-Dichloropropene         1.0         nd </td <td></td> <td></td> <td></td> <td>112%</td> <td>123%</td> <td></td> <td></td> |                           |           |          | 112%     | 123%     |         |     |
| Methyl-t-butyl ether (MTBE)         1.0         nd         nd           1,1-Dichloroethene         1.0         nd         nd           1,1-Dichloroethane         1.0         nd         nd           2-Butanone (MEK)         10.0         nd         nd           2,2-Dichloroethene         1.0         nd         nd           2,2-Dichloropropane         1.0         nd         nd           Chloroform         1.0         nd         nd           Bromochloromethane         1.0         nd         nd           1,1-Trichloroethane         1.0         nd         nd           1,2-Dichloropthane         1.0         nd         nd           1,2-Dichloropropene         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         94%         nd           1,1-Dichloropropene         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         82%         94%         nd           1,2-Dichloropropene         1.0         nd         10         nd                                                                                                     |                           |           |          | 11270    | 12570    |         |     |
| trans-1,2-Dichloroethene 1.0 nd 1,1-Dichloroethane 1.0 nd 2,1-Dichloroethane 1.0 nd nd 2,2-Dichloroethene 1.0 nd nd 2,2-Dichloropropane 1.0 nd nd nd 2,2-Dichloropropane 1.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |          |          |          | •       |     |
| 1,1-Dichloroethane         1.0         nd         nd           2-Butanone (MEK)         10.0         nd         nd           cis-1,2-Dichloroethene         1.0         nd         nd           2,2-Dichloropropane         1.0         nd         nd           Chloroform         1.0         nd         nd           Bromochloromethane         1.0         nd         nd           1,1,1-Trichloroethane         1.0         nd         nd           1,2-Dichloroethane (EDC)         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           2-Dichloropropene         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           2-Brockloropropane         1.0         nd         94%         nd           Macabana         1.0         nd         82%         94%         nd           Macabana <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                         |                           |           |          |          |          |         |     |
| 2-Butanone (MEK) 10.0 nd nd ois-1,2-Dichloroethene 1.0 nd cis-1,2-Dichloroptopane 1.0 nd nd 2,2-Dichloroptopane 1.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |           |          |          |          |         | _   |
| cis-1,2-Dichloroethene         1.0         nd         nd           2,2-Dichloropropane         1.0         nd         nd           Chloroform         1.0         nd         nd           Bromochloromethane         1.0         nd         nd           1,1-Trichloroethane         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           Carbon tetrachloride         1.0         nd         94%         106%         nd           Benzene         1.0         nd         94%         106%         nd           Trichloropropane         1.0         nd         82%         94%         nd           1/2-Dichloropropane         1.0         nd         82%         94%         nd           nd Tichloropropane         1.0         nd         nd         nd           New Hyll-2-pentanone (MIBK)         1.0         nd         nd         nd           H-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           Toluene         1.0         nd         101%         nd         nd           Toluene                                                                                                 |                           |           |          |          |          |         |     |
| 2,2-Dichloropropane         1.0         nd         nd           Chloroform         1.0         nd         nd           Bromochloromethane         1.0         nd         nd           1,1-Trichloroethane         1.0         nd         nd           1,2-Dichloroethane (EDC)         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           Carbon tetrachloride         1.0         nd         94%         106%         nd           Benzene         1.0         nd         94%         106%         nd           Trichloroethene (TCE)         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         82%         94%         nd           nd         1,2-Dichloropropane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           4-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           Toluene         1.0         nd         11%         nd           Toluene         1.0         nd         11%         nd           Tolue                                                                                                   |                           |           |          |          |          |         | -   |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |           |          |          |          |         |     |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |           |          |          |          |         |     |
| 1,1,1-Trichloroethane         1.0         nd         nd           1,2-Dichloroethane (EDC)         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           Carbon tetrachloride         1.0         nd         94%         106%         nd           Benzene         1.0         nd         94%         106%         nd           Trichloroethene (TCE)         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         nd         nd         nd           Dibromomethane         1.0         nd         nd         nd         nd         nd           Bromodichloromethane         1.0         nd                                                                                    |                           |           |          |          |          |         | -   |
| 1,2-Dichloroethane (EDC)         1.0         nd         nd           1,1-Dichloropropene         1.0         nd         nd           Carbon tetrachloride         1.0         nd         nd           Benzene         1.0         nd         94%         106%         nd           Trichloroethene (TCE)         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           H-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           Toluene         1.0         nd         nd         nd         nd           Toluene         1.0         nd         101%         111%         nd         nd </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>            |                           |           |          |          |          |         | -   |
| 1,1-Dichloropropene         1.0         nd         nd           Carbon tetrachloride         1.0         nd         94%         106%         nd           Benzene         1.0         nd         94%         106%         nd           Trichloroethene (TCE)         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         nd         nd           Dibromomethane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           4-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           4-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           Toluene         1.0         nd         101%         nd         nd           Toluene         1.0         nd         101%         nd         nd         nd           Toluene         1.0         nd         101%         nd         <                                                                                          |                           |           |          |          |          |         |     |
| Carbon tetrachloride         1.0         nd         94%         106%         nd           Benzene         1.0         nd         94%         106%         nd           Trichloroethene (TCE)         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         nd         nd           Dibromomethane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           4-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           Toluene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         nd         nd         111%         nd         nd         111%         nd         nd         111%         nd         nd         nd         111%         nd         nd         nd                                                                                                       |                           |           |          |          |          |         |     |
| Benzene   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 1.0       | _        |          |          |         |     |
| Trichloroethene (TCE)         1.0         nd         82%         94%         nd           1,2-Dichloropropane         1.0         nd         nd         nd           Dibromomethane         1.0         nd         nd         nd           Bromodichloromethane         1.0         nd         nd         nd           4-Methyl-2-pentanone (MIBK)         1.0         nd         nd         nd           cis-1,3-Dichloropropene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         111%         nd         nd           Toluene         1.0         nd         101%         111%         nd         nd           Toluene         1.0         nd         101%         111%         nd         nd           Televanne         1.0         nd         nd         nd         nd         nd           2-Hexanne         1.0         nd         nd         nd         nd         nd           1,3-Dichloropropane         1.0         nd         nd         nd         nd         nd           2-Hexanne         1.0         nd         nd         nd         nd <td< td=""><td></td><td>1.0</td><td>nd</td><td>94%</td><td>106%</td><td></td><td></td></td<>                 |                           | 1.0       | nd       | 94%      | 106%     |         |     |
| 1,2-Dichloropropane         1.0         nd         nd           Dibromomethane         1.0         nd         nd           Bromodichloromethane         1.0         nd         nd           4-Methyl-2-pentanone (MIBK)         1.0         nd         nd           cis-1,3-Dichloropropene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         111%         nd                                                                                       |                           | 1.0       | nd       | 82%      |          |         |     |
| Dibromomethane   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 1.0       | nd       |          |          | n       | đ   |
| 4-Methyl-2-pentanone (MIBK)       1.0       nd       nd         cis-1,3-Dichloropropene       1.0       nd       101%       111%       nd         Toluene       1.0       nd       101%       111%       nd         trans-1,3-Dichloropropene       1.0       nd       nd       nd         1,1,2-Trichloroethane       1.0       nd       nd       nd         2-Hexanone       1.0       nd       nd       nd         1,3-Dichloropropane       1.0       nd       nd       nd         Dibromochloromethane       1.0       nd       nd       nd         Tetrachloroethene (PCE)       1.0       nd       nd       nd         1,2-Dibromoethane (EDB)       1.0       nd       nd       nd         1,1,1,2-Tetrachloroethane (EDB)       1.0       nd       98%       110%       nd         6thylbenzene       1.0       nd       98%       110%       nd         7,1,1,2-Tetrachloroethane       1.0       nd       nd       nd         8tyrene       1.0       nd       nd       nd         1,2,2-Tetrachloroethane       1.0       nd       nd       nd         1sopropylbenzene <td< td=""><td></td><td>1.0</td><td>nd</td><td></td><td></td><td>ne</td><td>d</td></td<>                                                                     |                           | 1.0       | nd       |          |          | ne      | d   |
| cis-1,3-Dichloropropene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         111%         nd           trans-1,3-Dichloropropene         1.0         nd         nd         nd           1,1,2-Trichloroethane         1.0         nd         nd         nd           2-Hexanone         1.0         nd         nd         nd           1,3-Dichloropropane         1.0         nd         nd         nd           Dibromochloromethane         1.0         nd         nd         nd           Tetrachloroethane (PCE)         1.0         nd         nd         nd           1,2-Dibromoethane (EDB)         1.0         nd         nd         nd           1,1,1,2-Tetrachloroethane (EDB)         1.0         nd         nd         nd           1,1,1,2-Tetrachloroethane         1.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Bromoform         1.0         nd         nd         nd           1,2,3-Trichloropropane         1.0         nd                                                                                            | Bromodichloromethane      | 1.0       | nd       |          |          | ne      | d   |
| cis-1,3-Dichloropropene         1.0         nd         101%         111%         nd           Toluene         1.0         nd         101%         111%         nd           trans-1,3-Dichloropropene         1.0         nd         nd         nd           1,1,2-Trichloroethane         1.0         nd         nd         nd           2-Hexanone         1.0         nd         nd         nd           1,3-Dichloropropane         1.0         nd         nd         nd           Dibromochloromethane         1.0         nd         nd         nd           Tetrachloroethane (PCE)         1.0         nd         nd         nd           1,2-Dibromoethane (EDB)         1.0         nd         nd         nd           1,1,1,2-Tetrachloroethane (EDB)         1.0         nd         nd         nd           1,1,1,2-Tetrachloroethane         1.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Bromoform         1.0         nd         nd         nd           1,2,3-Trichloropropane         1.0         nd                                                                                            |                           | 1.0       | nd       |          | _        | ne      | d   |
| Toluene         1.0         nd         101%         111%         nd           trans-1,3-Dichloropropene         1.0         nd         nd         nd           1,1,2-Trichloroethane         1.0         nd         nd         nd           2-Hexanone         1.0         nd         nd         nd           1,3-Dichloropropane         1.0         nd         nd         nd           Dibromochloromethane         1.0         nd         nd         nd           Tetrachloroethene (PCE)         1.0         nd         nd         nd           1,2-Dibromoethane (EDB)         1.0         nd         nd         nd           Chlorobenzene         1.0         nd         98%         110%         nd           nd 1,1,2-Tetrachloroethane         1.0         nd         nd         nd         nd           Etylenes         3.0         nd         nd         nd         nd           Styrene         1.0         nd         nd         nd           Bromoform         1.0         nd         nd         nd           1,2,3-Trichloroethane         1.0         nd         nd         nd           1,2,3-Trichloropropane         1.0                                                                                                    |                           | 1.0       | nd       |          | •        | ne      | d   |
| 1,1,2-Trichloroethane       1.0       nd       nd         2-Hexanone       1.0       nd       nd         1,3-Dichloropropane       1.0       nd       nd         Dibromochloromethane       1.0       nd       nd         Tetrachloroethene (PCE)       1.0       nd       nd         1,2-Dibromoethane (EDB)       1.0       nd       nd         Chlorobenzene       1.0       nd       98%       110%       nd         Chlorobenzene       1.0       nd       98%       110%       nd         1,1,1,2-Tetrachloroethane       1.0       nd       nd       nd         2thylbenzene       1.0       nd       nd       nd         Styrene       1.0       nd       nd       nd         Bromoform       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Bromobenzene       1.0       nd       nd       nd         1-Propylbenzene       1.0       nd       nd       nd         2-Chlorotoluene       1.0       nd       nd       nd     <                                                                                                                                                                                       |                           | 1.0       | nd       | 101%     | 111%     | n       | đ   |
| 2-Hexanone       1.0       nd       nd         1,3-Dichloropropane       1.0       nd       nd         Dibromochloromethane       1.0       nd       nd         Tetrachloroethene (PCE)       1.0       nd       nd         1,2-Dibromoethane (EDB)       1.0       nd       nd         Chlorobenzene       1.0       nd       98%       110%       nd         Chlorobenzene       1.0       nd       98%       110%       nd         1,1,1,2-Tetrachloroethane       1.0       nd       nd       nd         Ethylbenzene       1.0       nd       nd       nd         Xylenes       3.0       nd       nd       nd         Styrene       1.0       nd       nd       nd         Bromoform       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Bromobenzene       1.0       nd       nd       nd         1-Propylbenzene       1.0       nd       nd       nd         2-Chlorotoluene       1.0       nd       nd       nd                                                                                                                                                                                                  | trans-1,3-Dichloropropene | 1.0       | nd       |          |          | no      | đ   |
| 2-Hexanone       1.0       nd       nd         1,3-Dichloropropane       1.0       nd       nd         Dibromochloromethane       1.0       nd       nd         Tetrachloroethene (PCE)       1.0       nd       nd         1,2-Dibromoethane (EDB)       1.0       nd       nd         Chlorobenzene       1.0       nd       98%       110%       nd         Chlorobenzene       1.0       nd       98%       110%       nd         1,1,1,2-Tetrachloroethane       1.0       nd       nd       nd         Ethylbenzene       1.0       nd       nd       nd         Xylenes       3.0       nd       nd       nd         Styrene       1.0       nd       nd       nd         Bromoform       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Bromobenzene       1.0       nd       nd       nd         1-Propylbenzene       1.0       nd       nd       nd         2-Chlorotoluene       1.0       nd       nd       nd                                                                                                                                                                                                  | 1,1,2-Trichloroethane     | 1.0       | nd       |          |          | no      | t   |
| Dibromochloromethane         1.0         nd         nd           Tetrachloroethene (PCE)         1.0         nd         nd           1,2-Dibromoethane (EDB)         1.0         nd         nd           Chlorobenzene         1.0         nd         98%         110%         nd           Chlorobenzene         1.0         nd         98%         110%         nd           1,1,1,2-Tetrachloroethane         1.0         nd         nd         nd           Ethylbenzene         1.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Bromoform         1.0         nd         nd         nd           Isopropylbenzene         1.0         nd         nd         nd           Isopropylbenzene         1.0         nd         nd         nd           Bromobenzene         1.0         nd         nd         nd           1-Propylbenzene         1.0         nd         nd         nd           2-Chlorotoluene         1.0         nd         nd         nd           4-Chlorotoluene         1.0         nd         nd         nd           1,3,5-Trimethylbenzene                                                                                                              | 2-Hexanone                | 1.0       | nd       |          |          | . no    | Ĺ   |
| Tetrachloroethene (PCE)         1.0         nd         nd           1,2-Dibromoethane (EDB)         1.0         nd         nd           Chlorobenzene         1.0         nd         98%         110%         nd           1,1,1,2-Tetrachloroethane         1.0         nd         nd         nd           Ethylbenzene         1.0         nd         nd         nd           Styrene         3.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Bromoform         1.0         nd         nd         nd           1,1,2,2-Tetrachloroethane         1.0         nd         nd         nd           Isopropylbenzene         1.0         nd         nd         nd           Isopropylbenzene         1.0         nd         nd         nd           Propylbenzene         1.0         nd         nd         nd           2-Chlorotoluene         1.0         nd         nd         nd           4-Chlorotoluene         1.0         nd         nd         nd           4-Chlorotoluene         1.0         nd         nd         nd           1,3,5-Trimethylbenzene                                                                                                                 | 1,3-Dichloropropane       | 1.0       | nd       |          |          | no      | t   |
| 1,2-Dibromoethane (EDB)       1.0       nd       nd       nd         Chlorobenzene       1.0       nd       98%       110%       nd         1,1,1,2-Tetrachloroethane       1.0       nd       nd       nd         Ethylbenzene       1.0       nd       nd       nd         Xylenes       3.0       nd       nd       nd         Styrene       1.0       nd       nd       nd         Bromoform       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Isopropylbenzene       1.0       nd       nd       nd         Propylbenzene       1.0       nd       nd       nd         2-Chlorotoluene       1.0       nd       nd       nd         4-Chlorotoluene       1.0       nd       nd       nd         4-Chlorotoluene       1.0       nd       nd       nd         tert-Butylbenzene       1.0       nd       nd       nd                                                                                                                                                                                                                                                                                                                                                               | Dibromochloromethane      | 1.0       | nd       |          |          | no      | Ŀ   |
| Chlorobenzene         1.0         nd         98%         110%         nd           1,1,1,2-Tetrachloroethane         1.0         nd         nd         nd           Ethylbenzene         1.0         nd         nd         nd           Xylenes         3.0         nd         nd         nd           Styrene         1.0         nd         nd         nd           Bromoform         1.0         nd         nd         nd           Isopropylenzene         1.0         nd         nd         nd           Isopropylbenzene         1.0         nd         nd         nd           Bromobenzene         1.0         nd         nd         nd           1-Propylbenzene         1.0         nd         nd         nd           2-Chlorotoluene         1.0         nd         nd         nd           4-Chlorotoluene         1.0         nd         nd         nd           tert-Butylbenzene         1.0         nd         nd         nd                                                                                                                                                                                                                                                                                                    | Tetrachloroethene (PCE)   | 1.0       | nd       |          |          | no      | ť   |
| 1,1,1,2-Tetrachloroethane       1.0       nd       nd         Ethylbenzene       1.0       nd       nd         Xylenes       3.0       nd       nd         Styrene       1.0       nd       nd         Bromoform       1.0       nd       nd         1,1,2,2-Tetrachloroethane       1.0       nd       nd         Isopropylbenzene       1.0       nd       nd         1,2,3-Trichloropropane       1.0       nd       nd         Bromobenzene       1.0       nd       nd         n-Propylbenzene       1.0       nd       nd         2-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         1,3,5-Trimethylbenzene       1.0       nd       nd         tert-Butylbenzene       1.0       nd       nd                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dibromoethane (EDB)   | 1.0       | nd       |          |          | no      | İ   |
| Ethylbenzene       1.0       nd       nd         Xylenes       3.0       nd       nd         Styrene       1.0       nd       nd         Bromoform       1.0       nd       nd         1,1,2,2-Tetrachloroethane       1.0       nd       nd         Isopropylbenzene       1.0       nd       nd         1,2,3-Trichloropropane       1.0       nd       nd         Bromobenzene       1.0       nd       nd         n-Propylbenzene       1.0       nd       nd         2-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         1,3,5-Trimethylbenzene       1.0       nd       nd         tert-Butylbenzene       1.0       nd       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 1.0       | nd       | 98%      | 110%     | no      | i   |
| Xylenes       3.0       nd       nd         Styrene       1.0       nd       nd         Bromoform       1.0       nd       nd         1,1,2,2-Tetrachloroethane       1.0       nd       nd         Isopropylbenzene       1.0       nd       nd         Isopropylbenzene       1.0       nd       nd         1,2,3-Trichloropropane       1.0       nd       nd         Bromobenzene       1.0       nd       nd         n-Propylbenzene       1.0       nd       nd         2-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         1,3,5-Trimethylbenzene       1.0       nd       nd         tert-Butylbenzene       1.0       nd       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,1,2-Tetrachloroethane | 1.0       | nd       |          |          | no      | 1   |
| Styrene         1.0         nd         nd           Bromoform         1.0         nd         nd           1,1,2,2-Tetrachloroethane         1.0         nd         nd           Isopropylbenzene         1.0         nd         nd           1,2,3-Trichloropropane         1.0         nd         nd           Bromobenzene         1.0         nd         nd           n-Propylbenzene         1.0         nd         nd           2-Chlorotoluene         1.0         nd         nd           4-Chlorotoluene         1.0         nd         nd           1,3,5-Trimethylbenzene         1.0         nd         nd           tert-Butylbenzene         1.0         nd         nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylbenzene              | 1.0       | nd       |          |          | no      | į   |
| Bromoform         1,0         nd         nd           1,1,2,2-Tetrachloroethane         1.0         nd         nd           Isopropylbenzene         1.0         nd         nd           1,2,3-Trichloropropane         1.0         nd         nd           Bromobenzene         1.0         nd         nd           n-Propylbenzene         1.0         nd         nd           2-Chlorotoluene         1.0         nd         nd           4-Chlorotoluene         1.0         nd         nd           1,3,5-Trimethylbenzene         1.0         nd         nd           tert-Butylbenzene         1.0         nd         nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Xylenes                   | 3.0       | nd       |          |          | nc      | 1   |
| 1,1,2,2-Tetrachloroethane       1.0       nd       nd         Isopropylbenzene       1.0       nd       nd         1,2,3-Trichloropropane       1.0       nd       nd         Bromobenzene       1.0       nd       nd         n-Propylbenzene       1.0       nd       nd         2-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         1,3,5-Trimethylbenzene       1.0       nd       nd         tert-Butylbenzene       1.0       nd       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Styrene                   | 1.0       | nd       |          |          | no      | i   |
| Isopropylbenzene         1.0         nd         nd           1,2,3-Trichloropropane         1.0         nd         nd           Bromobenzene         1.0         nd         nd           n-Propylbenzene         1.0         nd         nd           2-Chlorotoluene         1.0         nd         nd           4-Chlorotoluene         1.0         nd         nd           1,3,5-Trimethylbenzene         1.0         nd         nd           tert-Butylbenzene         1.0         nd         nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bromoform                 | 1.0       | nd       |          |          | nc      | i   |
| 1,2,3-Trichloropropane       1.0       nd       nd         Bromobenzene       1.0       nd       nd         n-Propylbenzene       1.0       nd       nd         2-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         1,3,5-Trimethylbenzene       1.0       nd       nd         tert-Butylbenzene       1.0       nd       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-Tetrachloroethane | 1.0       | nd       |          |          | nd      | i   |
| Bromobenzene 1.0 nd nd n-Propylbenzene 1.0 nd nd 2-Chlorotoluene 1.0 nd nd 4-Chlorotoluene 1.0 nd nd 1,3,5-Trimethylbenzene 1.0 nd nd tert-Butylbenzene 1.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |           | nd       |          |          | nd      | l   |
| n-Propylbenzene 1.0 nd nd 2-Chlorotoluene 1.0 nd nd 4-Chlorotoluene 1.0 nd nd 1,3,5-Trimethylbenzene 1.0 nd nd tert-Butylbenzene 1.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |           |          |          |          | nd      | í   |
| 2-Chlorotoluene       1.0       nd       nd         4-Chlorotoluene       1.0       nd       nd         1,3,5-Trimethylbenzene       1.0       nd       nd         tert-Butylbenzene       1.0       nd       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |           |          |          |          | nd      | i   |
| 4-Chlorotoluene 1.0 nd nd 1,3,5-Trimethylbenzene 1.0 nd nd tert-Butylbenzene 1.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |           |          |          |          |         |     |
| 1,3,5-Trimethylbenzene1.0ndndtert-Butylbenzene1.0ndnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Chlorotoluene           |           |          |          | •        | nd      | i   |
| tert-Butylbenzene 1.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chlorotoluene           |           |          |          |          |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |           |          |          |          | nd      | į   |
| 1,2,4-Trimethylbenzene 1.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tert-Butylbenzene         |           |          | •        |          | nd      | į   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2,4-Trimethylbenzene    | 1.0       | nd       |          |          | nd      | i   |

Washington Department of Fish & Wildlife CCA CREEK REHAB PROJECT Pend Oreille County, Washington

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (3 (360) 459-3432 Fax lab@esnnw.com

**Analytical Results** 

| 8260B, µg/L (Water)         | Reporting | MB       | LCS      | LCSD     | CCA CREEK |
|-----------------------------|-----------|----------|----------|----------|-----------|
| Date analyzed               | Limits    | 03/12/09 | 03/12/09 | 03/12/09 | 03/13/09  |
| sec-Butylbenzene            | 1.0       | nd       |          |          | nd        |
| 1,3-Dichlorobenzene         | 1.0       | nd       |          | •        | nd        |
| 1,4-Dichlorobenzene         | 1.0       | nd       |          |          | nd        |
| Isopropyltoluene            | 1.0       | nd       |          |          | nd        |
| 1,2-Dichlorobenzene         | 1.0       | nd       |          |          | nd        |
| n-Butylbenzene              | 1.0       | nd       |          |          | nd        |
| 1,2-Dibromo-3-Chloropropane | 1.0       | nd       |          |          | nd        |
| 1,2,4-Trichlorobenzene      | 1.0       | nd       |          |          | nd        |
| Naphthalene                 | 1.0       | nd       |          |          | nd        |
| Hexachloro-1,3-butadiene    | 1.0       | nd       |          |          | nd        |
| 1,2,3-Trichlorobenzene      | 1.0       | nd       |          |          | nd        |
| Surrogate recoveries        |           |          | •        | .,       |           |
| Dibromofluoromethane        |           | 109%     | 104%     | 104%     | 104%      |
| Toluene-d8                  |           | 114%     | 108%     | 106%     | 109%      |
| 4-Bromofluorobenzene        |           | 114%     | 107%     | 104%     | 105%      |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Washington Department of Fish & Wildlife CCA CREEK REHAB PROJECT Pend Oreille County, Washington

Pentachiorophenol

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| 8270, µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | MTH BLK  |          | CCA Creek | MS       | MSD      | RPD   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-----------|----------|----------|-------|
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water     | Water    | Water    | Water     | Water    | Water    |       |
| Date extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reporting | 03/13/09 | 03/13/09 | 03/13/09  | 03/13/09 | 03/13/09 |       |
| Date analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits    | 03/13/09 | 03/13/09 | 03/13/09  | 03/13/09 | 03/13/09 |       |
| Pyridine .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,0       | nd       |          | nd        | -        |          |       |
| Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0       | nd       |          | nd        | •        |          |       |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,0       | nd       |          | nd        | 90%      | 104%     | 14%   |
| to the state of th | 2,0       | nd       |          | nd        | 117%     | 131%     | 11%   |
| 2-Chlorophenol Bis (2-chloroethyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0       | nd       |          | nd        | 11770    | 13176    | 1170  |
| 1.3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0       | nd       | •        | nd        |          |          |       |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0       | nd nd    | 128%     | nd        | 97%      | 121%     | 22%   |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0       | nd       | 12070    | nď        | 37.70    | 12.170   | 22.70 |
| Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0       | nd       |          | nd        |          |          |       |
| 2-Methylphenol (o-cresol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd       |          | nd        |          | •        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0      | nd       |          | nd        |          |          |       |
| Bis (2-chloroisopropyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,0       | nd       |          | nd        |          |          |       |
| 3,4-Methylphenol (m,p-cresol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0       | nd       |          | nd        |          |          |       |
| Hexacholorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0       | nd       |          | nd        | 106%     | 125%     | 16%   |
| N-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |          |          |           | 10076    | 12070    | 10%   |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0       | nd .     |          | nd        |          | •        |       |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0       | nd<br>   |          | nd        |          |          |       |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0      | nd       |          | nd<br>    |          |          |       |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0      | nd -     |          | nd        | •        |          |       |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0       | · nd     |          | nd        |          |          |       |
| Bis (2-chloroethoxy) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0       | nd       |          | nd        | •        |          |       |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10:0      | nd       |          | nd        | 4.004    |          |       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0       | nd       |          | nd        | 110%     | 103%     | 7%    |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0       | nd       |          | nd        |          |          |       |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0      | nd       |          | nd        |          |          |       |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0       | nd       | 118%     | nd        |          |          | 1 252 |
| 4-Chioro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0      | nd       |          | nd        | 79%      | 86%      | 8%    |
| 2-Methylnapthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0       | nd       |          | ' nd      |          |          | *     |
| I-Methylnapthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0       | nd       |          | nd        |          |          |       |
| -lexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0       | nd       |          | nd        |          |          |       |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0      | nd ·     |          | nd        |          |          |       |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0      | nd       |          | nd        |          |          |       |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0       | nd       |          | nd        |          |          |       |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0      | nd       |          | nd        |          |          |       |
| 1,4-Dinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0      | nd       |          | nd        |          |          |       |
| Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0       | nd       |          | nd        |          |          |       |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2       | nd       |          | nd        |          |          |       |
| ,3-Dinotrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,0      | nd       |          | nd        |          |          |       |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0       | nd       |          | nd        |          |          |       |
| ,2-Dinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0       | nd       |          | nd        |          |          |       |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,2       | nd       | 126%     | nd        | 98%      | 99%      | 1%    |
| -Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0      | nd       |          | nd        |          |          |       |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0       | nd       |          | nd        |          |          |       |
| .4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0       | nd       |          | nd        | 94%      | 104%     | 10%   |
| ,3,4,6-Tetrachiorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0       | nd       |          | nd        |          |          |       |
| 3,5,6-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0       | nd       |          | nd        |          |          |       |
| 4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0      | nd       |          | nd        |          |          |       |
| luorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2       | nd       |          | nd        |          |          |       |
| -Chlorophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0       | nd       |          | nd        |          |          |       |
| Piethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0       | nd       |          | nd        |          | •        |       |
| -Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,0      | nd       |          | nd        |          |          |       |
| .6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0      | nd       |          | nd        |          |          |       |
| -nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0       | nd       | 113%     | nd        |          |          |       |
| zobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd       | 1 70,70  | nd        |          |          |       |
| -Bromophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0       | nd       |          | nd        |          |          |       |
| exachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0       | nd       |          | nd        |          |          |       |
| exachioropenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0      | hd       |          | nd        | -        |          |       |

nd

10.0

nd

Washington Department of Fish & Wildlife CCA CREEK REHAB PROJECT Pend Oreille County, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| 8270, μg/L                   |           | MTH BLK  | · LCS    | CCA Creek | MS       | MSD      | RPD                                     |
|------------------------------|-----------|----------|----------|-----------|----------|----------|-----------------------------------------|
| Matrix                       | Water     | Water    | Water    | Water     | Water    | Water    | *************************************** |
| Date extracted               | Reporting | 03/13/09 | 03/13/09 | 03/13/09  | 03/13/09 | 03/13/09 |                                         |
| Date analyzed                | Limits    | 03/13/09 | 03/13/09 | 03/13/09  | 03/13/09 | 03/13/09 |                                         |
| Phenanthrene                 | 0.2       | nď       | ٠.٠      | nď        |          |          |                                         |
| Anthracene                   | 0.2       | nd       |          | nd        |          |          |                                         |
| Carbazole                    | 2.0       | nd       |          | nd        |          |          |                                         |
| Di-n-butylphthalate          | 2,0       | nd       |          | nd        |          |          |                                         |
| Fluoranthene                 | 0,2       | nd       | 124%     | nd        |          |          |                                         |
| Pyrene                       | 0,2       | . nd     |          | . nd      | 121%     | 114%     | 6%                                      |
| Butylbenzylphthalate         | 2,0       | nd       |          | nd        |          |          |                                         |
| Bis(2-ethylhexyl) adipate    | 2,0       | nd       |          | nd        |          |          |                                         |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd ·      |          |          |                                         |
| Chrysene                     | 0.2       | nd       |          | · nd      |          |          | •                                       |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | · nd      |          |          |                                         |
| Di-n-octyl phthalate         | 2.0       | nd       |          | nd        |          |          |                                         |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd        |          |          |                                         |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd        |          |          |                                         |
| Benzo(a)pyrene               | 0,2       | nd       | 83%      | nd        |          |          |                                         |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd        |          |          |                                         |
| Benzo(ghi)perylene           | 0,2       | nd       |          | nd        |          |          |                                         |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | . nd      |          | *        |                                         |
| 1-Methyl-2-Pyrrolidone       | 2.0       | nd       |          | nd        |          |          |                                         |
| Surrogate recoveries         |           |          |          |           |          |          |                                         |
| 2-Fluorophenol               |           | 84%      | 122%     | М         | 104%     | 115%     |                                         |
| Phenol-d6                    |           | 74%      | 115%     | М         | 97%      | 102%     |                                         |
| Nitrobenzene-d5              |           | 105%     | 127%     | 98%       | 96%      | 100%     |                                         |
| 2-Fluorobiphenyl             |           | 89%      | 131%     | 89%       | 95%      | 102%     |                                         |
| 2,4,6-Tribromophenol         |           | 67%      | 95%      | М         | 75%      | 91%      | •                                       |
| 4-Terphenyl-d14              |           | 85%      | 128%     | 73%       | 78%      | 85%      |                                         |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits:

2-Flurophenol: 10-135 %

Phenol - d5: 10-135 % 2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

### POST-REHABILITATION REPORT

### North Potholes (Westlake Ponds)

### WATER: North Potholes Ponds (Upper Crab Creek Arm)

**LOCATION:** Grant Co.; Section 31, T18N, R27E and Section 31, T19N, R28E; consisting of ponds in the northern portion of Potholes Reservoir.

DATE(S) TREATED: October 6, 2008

**PURPOSE:** Eliminate fish and bullfrog larvae from selected ponds in the Northern Leopard Frog Management Area within the Potholes Wildlife Area, and to enhance conditions for leopard frogs.

**LISENCED APPLICATOR:** Jeffrey W. Korth, WA Dept Fish and Wildlife (DFW), District 5 Fisheries Biologist, Pesticide License # 39429.

**LAKE DESCRIPTION**: At the time of treatment, the treatment area (TA) contained 35 small ponds; water level was at least 7 ft below high water marks:

Surface acres: 46.7

Depth: average 2 ft; maximum 8.5 ft

Volume: ~ 105.6 acre-feet

Weight of Water: 287,227,945 lbs

Connectivity: subterranean flows; no surface inlets or outlets. A series of small dikes separate the surface water of ponds in the TA from the main body of Potholes Reservoir.

35 separate ponds were treated.

### TREATMENT DESCRIPTION:

Toxicant/methods used: Rotenone; Liquid CFT Legumine EPA Reg # 75338-2

140.8 gal. liquid formulation, 5% equivalent

Total Concentration Applied: 4.0 ppm

All liquid sprayed by helicopter Detoxification Procedures: None.

### PHYSICAL CHARACTERISTICS OF THE LAKE/WATER DURING TREATMENT:

Weather - Sunny, 2-5 mph easterly wind, air temp = 47-66F, avg. 56

**Pre-treatment water quality parameters** – Data was collected from 1 representative pond. Due to shallowness of waters, only a surface water sample was collected.

| Pond ID | Date     | pН   | temp   |
|---------|----------|------|--------|
| B6a     | 10/04/08 | 7.68 | 18.9 C |

### SPECIES ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

- 1) Carp (hundreds, yearling to large, old adults);
- 2) Bullfrogs (hundreds, all tadpoles 1-2 yr old); and

**PRE- AND POST- TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009):

*Impact to non-targeted organisms* – Zooplankton were sampled for diversity and abundance just previous to treatment, six months post treatment, and will again be sampled 12 months post treatment. Samples were taken from pond B6a. Samples are currently being processed, and the results will be available by separate report.

Liquid rotenone formulation longevity — Water samples were taken at 24 hours and four weeks post treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Water samples were taken from the large pond SE of the DNR crop circle (pond B6a). Samples were sent to an accredited lab for analyses per EPA methods. All 23 volatile and semi-volatile organic compounds possibly present in liquid rotenone formulations, including benzene, tolulene, phenol, xylene, acetone, acenapthalene, fluorine, and derivatives of these compounds, were below detection limits in the 24-hour and four-week post-treatment samples.

**Period of Toxicity** – The bioassay with rainbow trout in a live-box was conducted from 11:00 am November 10<sup>th</sup> to 1:00 pm November 14<sup>th</sup>. Twelve fingerling (~2") rainbow trout were placed in a live-box in Pond B4a. Pond B4a was selected because Pond B6a had nearly dried up and no suitable place existed to perform the bioassay. On the 14<sup>th</sup> of November, 9 fish were alive and 3 had perished.

### **DESCRIPTION OF TREATMENT AND OTHER COMMENTS:**

The fall 2008 treatment of the North Potholes Westlake Ponds was accomplished entirely with liquid rotenone. This "drainage" consists of the upper reaches of the Crab Creek Arm of Potholes Reservoir, which was at its lowest annual elevation at the time of treatment. Much of the area inundated earlier in the year was dry, and most ponds were quite small and shallow. A helicopter was used to spray 142 gallons of liquid rotenone over all open water in the TA on the day of treatment.

Beginning approx. 2 hours post-application, all ponds in the TA were surveyed by 4 people. The survey was completed in approx. 3 hours. Dead and dying carp were seen in most treated ponds. No non-target animals were observed to be killed or affected, including Northern Leopard Frogs and other amphibians.

Cost: About 18 man-days (man-day = 8 hrs) were required to complete the rehabilitation of the Westlake Ponds, from pre-rehabilitation proposals to post-treatment reports (not including Fish Program planning, meetings, equipment procurement, etc common to all rehabilitations done this FY). Treatment required a crew of 6 people for most of one day. Total cost of the project (rotenone, helicopter, labor, travel, and expendable equipment) was approximately \$24,000, including ~\$8,000 for rotenone (liquid @ \$55/gal) and ~\$7,000 for the helicopter application.

The TA will continue to be managed as fish-free to enhance conditions for leopard frogs.

Richard Finger, Biologist WDFW Region 2 Wildlife Program

WA Dept. of Fish & Wildlife NLF ENHANCEMENT PROJECT Moses Lake, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com (360) 459-3432 Fax

| 8260, µg/L (Water)          |                      | MTH BLK  | LCS      | Potholes- | MS       | MSD      | RPD |
|-----------------------------|----------------------|----------|----------|-----------|----------|----------|-----|
|                             | Reporting            |          |          |           |          |          |     |
| Date analyzed               | Limits               | 10/15/08 | 10/15/08 | 10/15/08  | 10/15/08 | 10/15/08 |     |
| Dichlorodifluoromethane     | 1.0                  | nd       |          | nd        |          |          |     |
| Chloromethane               | 1.0                  | nd       |          | nd        |          |          |     |
| Vinvi chloride              | 0.2                  | nd       |          | nd        |          |          |     |
| Bromomethane                | 1.0                  | nd       |          | nd        |          |          | •   |
| Chloroethane                | 1.0                  | nd       |          | nd        |          |          |     |
| Trichlorofluoromethene      | 1.0                  | nd       |          | nd        |          |          |     |
| 1,1-Dichloroethene          | 1.0                  | nd       | 78%      | nd        | . 89%    | 78%      | 13% |
| Methylene chloride          | 1.0                  | nd       |          | nd        |          |          |     |
| trans-1,2-Dichloroethene    | 1.0                  | nd       |          | nd        |          |          |     |
| 1,1-Dichloroethane          | 1.0                  | nd -     |          | nd        |          |          |     |
| cis-1,2-Dichloroethene      | 1.0                  | nd       |          | nd        |          |          |     |
| 2,2-Dichloropropane         | 1.0                  | nd       |          | nd        |          |          |     |
| Chloroform                  | 1.0                  | nd       |          | i nd      |          |          |     |
| Bromochloromethane          | 1.0                  | nd       |          | nd        |          |          |     |
| 1,1,1-Trichloroethane       | 1.0                  | nd       |          | nd        |          | •        |     |
| 1,2-Dichloroethane          | 1.0                  | nd       |          | nd        |          |          |     |
| 1,1-Dichloropropene         | 1.0                  | nd       |          | nd        |          |          |     |
| Carbon tetrachloride        | 1.0                  | nd       |          | nd        |          |          |     |
| Велгеле                     | 1.0                  | nd       | 93%      | nd        | 100%     | 90%      | 11% |
| Trichloroethene             | 1.0                  | nd       | 92%      | nd        | 104%     | 91%      | 13% |
| 1,2-Dichloropropane         | 1.0                  | nd       |          | nd        |          |          |     |
| Dibromomethane              | 1.0                  | nd       |          | nd        |          |          |     |
| Bromodichloromethane        | 1.0                  | nd       |          | nd        |          |          |     |
| cis-1,3-Dichloropropene     | 1.0                  | nd       | 1.       | nd.       |          |          |     |
| Toluene                     | 1.0                  | nd       | 86%      | nd        | 102%     | 83%      | 21% |
| trans-1,3-Dichloropropene   | 1.0                  | nd       |          | nd        |          |          |     |
| 1.1,2-Trichloroethane       | 1.0                  | - nd     |          | nd        |          |          |     |
| 1,3-Dichloropropane         | 1.0                  | nd       |          | nd        |          |          |     |
| Dibromochloromethane .      | 1.0                  | nd       |          | nd        |          |          |     |
| Tetrachloroethene           | 1.0                  | nd       |          | nd        |          |          |     |
| 1,2-Dibromoethane (EDB)     | 1.0                  | nd       |          | nd        | •        |          |     |
| Chlorobenzene .             | 1.0                  | nd       | 96%      | nd        | 106%     | 89%      | 17% |
| 1,1,1,2-Tetrachloroethane   | 1.0                  | nd       |          | nd        |          |          |     |
| Ethylbenzene                | 1.0                  | nd       |          | nd        | •        |          |     |
| Xylenes                     | 1.0                  | nd       |          | nd        |          |          |     |
| Styrene                     | 1.0                  | nd       |          | nd        |          |          |     |
| Bromoform                   | 1.0                  | nd       |          | nd        |          |          |     |
| 1,1,2,2-Tetrachloroethane   | 1.0                  | nd       |          | · nd      |          |          |     |
| Isopropylbenzene            | 1.0                  | nd       |          | nd        |          |          |     |
| 1,2,3-Trichloropropane      | 1.0                  | nd       |          | nd        |          |          |     |
| Bromobenzene                | 1.0                  | nd       |          | nd        |          |          |     |
| n-Propylbenzene             | 1.0                  | nd       |          | nd        |          |          |     |
| 2-Chlorotoluene             | 1,0                  | nd       |          | nd        |          |          |     |
| 4-Chlorotoluene             | 1.0                  | nd       |          | nd        |          |          |     |
| 1,3,5-Trimethylbenzene      | 1.0                  | nd       |          | nd        |          |          |     |
| tert-Butylbenzene           | 1.0                  | nd       |          | nd        |          |          |     |
| 1,2,4-Trimethylbenzene      | 1.0                  | nd       |          | nd        |          |          |     |
| sec-Butylbenzene            | 1,0                  | nd       |          | nd        |          |          |     |
| 1,3-Dichlorobenzene         | 1.0                  | nd       |          | nd        |          |          |     |
| 1,4-Dichlorobenzene         | 1.0                  | nd       |          | nd        | •        |          |     |
| Isopropyltoluene            | 1.0                  | nd       |          | nd ·      |          |          |     |
| 1,2-Dichlorobenzene         | 1,0                  | nd       |          | nd        |          |          |     |
| n-Butylbenzene              | 1.0                  | nd       |          | nd        |          |          |     |
| 1,2-Dibromo-3-Chloropropane | 1.0                  | nd       |          | nd        |          |          |     |
| 1,2,4-Trichlorobenzene      | 1.0                  | nd       |          | nd        |          |          |     |
| Naphthalene                 | 1.0                  | nd       |          | nd        |          |          |     |
| Hexachloro-1,3-butadiene    | 1.0                  | nd       |          | nd        |          |          |     |
| 1,2,3-Trichlorobenzene      | 1.0                  | nd nd    |          | nd        |          |          |     |
| Surrogate recoveries        | years and the second |          |          |           |          |          |     |
| Dibromofluoromethane        |                      | 92%      | 90%      | 93%       | 92%      | 94%      |     |
| Toluene-d8                  |                      | 97%      | 99%      | 96%       | 101%     | 98%      |     |
| 4-Bromofluorobenzene        |                      | 102%     | 104%     | 107%      | 117%     | 105%     |     |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

WA Dept. of Fish & Wildlife NLF ENHANCEMENT PROJECT Moses Lake, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

**Analytical Results** 

| 8270, µg/L                    |             | MTH BLK  | LCS      | Potholes  | MS       | MSD      | RPD  |
|-------------------------------|-------------|----------|----------|-----------|----------|----------|------|
| Matrix                        | Water       | Water    | Water    | Water     | Water    | Water    |      |
| Date extracted                | Reporting   | 10/13/08 | 10/13/08 | 10/13/08  | 10/13/08 | 10/13/08 |      |
| Date analyzed                 | Limits      | 10/13/08 | 10/13/08 | 10/13/08  | 10/13/08 | 10/13/08 |      |
|                               | 200         |          |          | nd        |          | •        |      |
| Pyridine                      | 2.0         | nd       |          |           |          |          |      |
| Aniline                       | 2.0         | nd       |          | nd        | 81%      | 85%      | 5%   |
| Phenol                        | 2.0         | nd       |          | nd        | 106%     | 110%     | 4%   |
| 2-Chlorophenol                | 2.0         | nd       |          | nd        | 10076    | 11070    | 470  |
| Bis (2-chloroethyl) ether     | 2.0         | · nd     | •        | nd        |          |          |      |
| 1,3-Dichlorobenzene           | 2.0<br>2.0  | nd<br>nd | 124%     | nd<br>nd  | 102%     | . 100%   | 2%   |
| 1,4-Dichlorobenzene           |             |          | 12470    | nd        | 10276    | , 1,0076 | 2.70 |
| 1,2-Dichlorobenzene           | 2.0<br>2.0  | nd<br>nd |          | nd        |          | •        |      |
| N-methylpyrrolidone           |             |          |          | nd<br>nd  |          |          |      |
| Benzyl alcohol                | 2.0         | · nd     |          |           |          |          |      |
| 2-Methylphenol (o-cresol)     | 2.0<br>10.0 | nd<br>nd |          | nd<br>nd  |          |          |      |
| Bis (2-chloroisopropyl) ether |             |          |          | nd        |          |          |      |
| 3,4-Methylphenol (m,p-cresol) | 2.0<br>2.0  | nd<br>nd |          | nd        |          |          |      |
| Hexacholorethane              |             |          |          |           | 108%     | 109%     | 1%   |
| N-Nitroso-di-n-propylamine    | 2.0         | nd       |          | nd<br>nd  | 100%     | 109%     | 170  |
| Nitrobenzene                  | 2.0         | nd       |          |           |          |          |      |
| Isophorone                    | 2.0         | nd<br>   |          | nd        |          |          |      |
| 2-Nitrophenol                 | . 10.0      | nd       |          | nd        |          |          |      |
| 4-Nitrophenol                 | 10.0        | nd       |          | nd<br>    | 000/     | 0.407    | 2%   |
| 2,4-Dimethylphenol            | 2.0         | nd       |          | nd<br>- d | 82%      | 84%      | 2%   |
| Bis (2-chloroethoxy) methane  | 2.0         | nd       |          | nd        |          |          |      |
| 2,4-Dichlorophenol            | 10.0        | nd       | ,        | nd<br>    | 40.407   | 4000/    | 20/  |
| 1,2,4-Trichlorobenzene        | 2.0         | nd       |          | nd        | 124%     | 120%     | 3%   |
| Naphthalene                   | 2.0         | nd       |          | nd        |          |          |      |
| 4-Chloroaniline               | 10.0        | ·nd      |          | nd -      |          |          |      |
| Hexachlorobutadiene           | 2.0         | nd       | 126%     | nd        | 001/     | 000/     | 00/  |
| 4-Chloro-3-methylphenol       | 10.0        | nd       |          | nd        | 66%      | 66%      | 0%   |
| 2-Methylnapthalene            | 2.0         | nd       |          | nd        |          |          |      |
| 1-Methylnapthalene            | 2.0         | nd       |          | nd        |          |          |      |
| Hexachlorocyclopentadiene     | 2.0         | nd       |          | nd        |          |          |      |
| 2,4,6-Trichlorophenol         | 10.0        | nd       |          | nd        |          |          |      |
| 2,4,5-Trichlorophenol         | 10.0        | nd       |          | nd        |          |          |      |
| 2-Chloronaphthalene           | 2.0         | nd       |          | nd        |          |          |      |
| 2-Nitroaniline                | 10.0        | nd       |          | nd        |          |          |      |
| 1,4-Dinitrobenzene            | 10.0        | nd       |          | nd        |          |          |      |
| Dimethylphthalate             | 2.0         | nd       |          | nd        |          |          |      |
| Acenaphthylene                | 0.2         | nd       |          | nd        |          |          |      |
| 1,3-Dinotrobenzene            | 10.0        | nd       |          | nd        |          |          |      |
| 2,6-Dinitrotoluene            | 2.0         | nd       |          | nd        |          |          |      |
| 1,2-Dinitrobenzene            | . 2.0       | nd       |          | nd        |          | mo.      |      |
| Acenaphthene                  | 0.2         | nd       | 131%     | nd        | 115%     | 117%     | 2%   |
| 3-Nitroaniline                | . 10.0      | nd       |          | nd        |          |          |      |
| Dibenzofuran                  | 2.0         | nd       |          | nd        |          |          | •=:  |
| 2,4-Dinitrotoluene            | 2.0         | nd       |          | nd        | 94%      | 98%      | 4%   |
| 2,3,4,6-Tetrachlorophenol     | 2.0         |          |          | nd        | •        |          |      |
| 2,3,5,6-Tetrachlorophenol     | 2.0         | nd       |          | nd        |          |          |      |
| 2,4-Dinitrophenol             | 10.0        | nd       |          | nd        |          |          |      |
| Fluorene                      | 0.2         | nd       |          | nd        |          |          |      |

WA Dept. of Fish & Wildlife NLF ENHANCEMENT PROJECT Moses Lake, Washington

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 lab@esnnw.com (360) 459-3432 Fax

| Analytical Resi | ults |
|-----------------|------|
|-----------------|------|

| 8270, μg/L                   |           | MTH BLK  | LCS      | Potholes | MS       | MSD      | RPD |
|------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water    |     |
| Date extracted               | Reporting | 10/13/08 | 10/13/08 | 10/13/08 | 10/13/08 | 10/13/08 |     |
| Date analyzed                | Limits    | 10/13/08 | 10/13/08 | 10/13/08 | 10/13/08 | 10/13/08 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd       |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |          | nd       |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd       | •        |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 83%      | nd       |          |          |     |
| Azobenzene                   | 2.0       | nd       |          | nd       |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorobenzene            | 2.0       | . nd     |          | nd       |          |          | ,   |
| Pentachlorophenol            | 10.0      | nd       |          | nd       |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | nd       |          |          |     |
| Anthracene                   | 0.2       | nd       | •        | nd       |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       |          |          |     |
| Fluoranthene                 | . 0.2     | nd       | 126%     | nd       |          |          |     |
| Pyrene                       | 0.2       | nd       |          | nd       | 78%      | 79%      | 1%  |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd       |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd       |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |          |     |
| Chrysene                     | 0.2       | nd       |          | . nd     |          |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd .     | 96%      | nd       |          | * _      |     |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | · nd     |          | •        |     |
| Benzo(a)pyrene               | 0.2       | nd       | 80%      | nd       |          | •        |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       |          |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd       |          |          |     |
| Surrogate recoveries         |           |          |          |          |          |          |     |
| 2-Fluorophenol               |           | 80%      | 115%     | 122%     | 84%      | 83%      |     |
| Phenol-d6                    |           | 96%      | 105%     | 129%     | 88%      | 86%      |     |
| Nitrobenzene-d5              |           | 118%     | 124%     | 99%      | 86%      | 83%      |     |
| 2-Fluorobiphenyl             |           | 91%      | 134%     | 78%      | 89%      | 87%      |     |
| 2,4,6-Tribromophenol         |           | 69%      | 91%      | 63%      | 50%      | 52%      |     |
| 4-Terphenyl-d14              |           | 79%      | 130%     | 64%      | 75%      | 73%      |     |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%



# CHAIN-OF-CUSTODY RECORD

| 4               |                     | THE PARTY OF THE P | COLECTION (C/DA) 05         | Total Number for Containers  Total Containers  Total Number |       |      |                |      |          |                |   |         |                               |   |            |       |        |    |       |               |             |          |                             | つかりん                       | 5 /                            | 9                      |                              | AR 48 HR S DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|-------|------|----------------|------|----------|----------------|---|---------|-------------------------------|---|------------|-------|--------|----|-------|---------------|-------------|----------|-----------------------------|----------------------------|--------------------------------|------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 )            | ENTITINGENIENT      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | NOTES                                                       |       |      | -              |      |          |                |   |         |                               |   |            |       |        |    |       |               |             |          | SATORY NOTES:               | フロウムーのころと                  |                                | soten or               |                              | Turn Around Time: 24 HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PAGE.           | tym.                | LOCATION: TOTHERS OF THE SAKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COLLECTOR: July Will HEWALL |                                                             | 1     | _    |                | _    |          |                |   |         |                               |   |            |       |        |    |       |               |             |          | LABO                        |                            | > \<br>-                       | ×<br>-<br>1            |                              | Turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3-7             | 14 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.126                       |                                                             | 1     |      | 1              |      |          |                |   |         |                               |   |            |       |        |    |       | $\frac{1}{1}$ |             |          |                             |                            |                                |                        |                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/10           | ∯<br>Æ              | 77.10.0c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \ <u>-3</u>                 | 100000                                                      |       |      |                |      |          |                |   |         |                               |   |            |       |        |    |       | $\frac{1}{1}$ |             |          | PT                          | INERS                      | S YANNA                        | and the section to see | g                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/20           | CT NA               | Si Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTOR                        |                                                             |       |      |                |      |          |                |   |         |                               |   |            |       |        |    |       |               |             |          | SAMPLE RECEIPT              | F CONTRA                   | Y SEAL                         | NWA                    | COND /C                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DATE: 10 to 105 | PROJECT NAME: 146 F | OCATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COLLEC                      | 1 1818                                                      | -     |      |                |      | -        |                |   |         |                               |   |            |       |        |    |       |               |             |          | SAMPL                       | MBERO                      | CUSTO                          | TACT? Y                | 00000                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>        | <u>-</u>            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                           | 16.66                                                       |       |      |                |      |          |                |   |         |                               |   |            |       |        |    |       |               |             |          |                             | TOTAL NUMBER OF CONTAINERS | CHAIN OF CUSTODY SEALS YAWAA   | SEALS INTACT? YMMA     | RECEIVED GOOD COND /COLD     | NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                     | <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MANAGER & CHI FINDER        | 100 100 100 100 100 100 100 100 100 100                     | -     |      |                |      |          |                |   |         |                               |   |            |       |        |    |       |               |             |          | TIME                        |                            | DATE/TIME                      |                        |                              | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 1.49. 4-7.21        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sicil T                     | 100 00 00 00 00 00 00 00 00 00 00 00 00                     |       |      |                |      |          |                |   |         |                               |   |            | •     | 1      | •  |       |               |             |          | DATE/TIME                   | 20/ blos                   | DATE                           |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 206100          | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGER                        | 10 (10 10 10 10 10 10 10 10 10 10 10 10 10 1                |       |      |                |      |          |                |   |         |                               |   |            |       | 1      |    |       |               |             |          | nature)                     | 01 /2                      | nature)                        |                        |                              | Dicken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1340            | 11(1)               | FAX: Con Just 14.57.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TMAN                        | Se les les                                                  |       |      |                |      |          |                |   |         |                               |   |            |       | 4<br>3 |    |       |               |             |          | RECEIVED BY (Signature)     | mathen                     | D BY (Slynalure)               |                        | ONS                          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 7                   | FAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJECT                     | Container Type                                              |       |      |                | 1    | <u> </u> |                |   |         |                               |   |            |       |        |    |       |               |             |          | RECEIVE                     | II WILL                    | RECEIVED                       |                        | SAMPLE DISPOSAL INSTRUCTIONS | Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| of rash +       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                           |                                                             | ViAL  | MARL | TWIN           | Pint | 1007     |                |   | y and   |                               |   | 1 - 2 to 1 | III   |        |    |       |               |             |          |                             |                            | 1                              |                        | SAL INS                      | Considerate & to Meach C Ratem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | FALREN              | Titie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | Sample<br>Type                                              |       |      |                |      |          |                |   |         |                               |   |            | FAIRE |        |    |       |               |             |          | DATE/IME                    | 0051 60/20/01              | DATE/TIME                      |                        | DISPO                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1               | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | James                                                       | 12.30 | 0 e  | 12.C           | 1233 | 1223     |                |   |         |                               |   |            | *Sc./ |        |    | *** % |               | i<br>i<br>i |          | Û                           | ofal                       | ٥                              |                        | SAMPLE                       | 400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - 1             | 0000                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # L                         | Depth                                                       | *     | .≯   | 净              | ķ    | *        |                |   |         | 11<br>51 - 1 - 1<br>1 - 2 - 1 |   |            | 3     |        |    |       |               |             | F., 100  | mature)                     | 7<br>7<br>7<br>7<br>7      | onature)                       |                        | "                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (A)             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROJEC                       | umber                                                       |       |      | and the second |      |          |                |   |         |                               |   |            |       |        |    |       |               |             |          | 30 BY (Si                   |                            | D BY (Si                       |                        |                              | And the second s |
| CLIENT: LOT     | ADDRESS:            | PHONE (5/17) 754- 11(4/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLIENT PROJECT #:           | Sample Number                                               |       |      |                |      |          |                |   |         |                               |   |            |       |        | 5  |       |               |             |          | RELINQUISHED BY (Signature) |                            | RFI INDI JISHED BY (Signature) |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ਹ               | Ą                   | 盂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ਹ                           | <b>ö</b>                                                    |       | 2    | 3              | 4    | 20       | <br> <br>  (c) | ~ | <u></u> | 0                             | 5 | ÷          | 2     | 5.     | 14 | 15.   | 16.           | 12          | <u>~</u> | 盟                           | =                          | - E                            |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

WA Dept. of Fish & Wildlife . WESTLAKE - H. LEOPARD FROG PROJECT Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

Analytical Results

| 8260, μg/L (Water)               | Reporting | MTH BLK         | LCS          | #1           | MS           | MSD          | RP      |
|----------------------------------|-----------|-----------------|--------------|--------------|--------------|--------------|---------|
| Date analyzed                    | Limits    | 11/19/08        | 11/19/08     |              | 11/19/08     | 11/19/08     | 11/19/0 |
| Dichlorodifluoromethane          | 1.0       | nd              |              | nd           | *            |              |         |
| Chloromethane                    | 1.0       | nd              |              | nd           |              |              |         |
| Vinyl chloride                   | 0.2       | nd              |              | nd           |              |              |         |
| Bromomethane                     | 1.0       | nd              |              | nd           |              |              | ,       |
| Chloroethane                     | 1.0       | nd              |              | nd           |              |              |         |
| Trichlorofluoromethane           | 1.0       | nd              |              | nd           |              |              |         |
| 1,1-Dichloroethene               | 1.0       | nd              | 63%          | nd           | 87%          | 65%          | 299     |
| Methylene chloride               | 1.0       | nd              |              | nd           |              |              |         |
| MTBE                             | 1.0       | nd              |              | nd           |              |              |         |
| trans-1,2-Dichloroethene         | 1.0       | nd              |              | nd           |              |              |         |
| 1,1-Dichloroethane               | 1.0       | <sub>.</sub> nd |              | nd           |              |              |         |
| cis-1,2-Dichloroethene           | 1.0       | nd              | -            | nd           | •            |              |         |
| 2,2-Dichloropropane              | 1.0       | nd              |              | nd           |              |              |         |
| Chloroform                       | 1.0       | nd              |              | nd           | *            |              |         |
| Bromochloromethane               | 1.0       | nd              |              | nd           |              |              |         |
| 1,1,1-Trichloroethane            | 1.0       | nd              |              | nd           |              | •            |         |
| 1,2-Dichloroethane (EDC)         | 1.0       | nd              |              | nd           |              |              |         |
| 1,1-Dichloropropene              | 1.0       | nd              |              | nd           |              |              |         |
| Carbon tetrachloride             | 1.0       | nd              |              | nd           |              |              |         |
| Benzene                          | 1.0       | nd              | 102%         | nd           | 121%         | 85%          | 35%     |
| Trichloroethene                  | 1.0       | nd              | 108%         | nd           | 128%         | 86%          | 39%     |
| 1,2-Dichloropropane              | 1.0       | nd              |              | nd           |              |              |         |
| Dibromomethane                   | 1.0       | nd              |              | nd           |              |              |         |
| Bromodichloromethane             | 1.0       | nd              |              | nd ·         |              |              |         |
| cis-1,3-Dichloropropene          | 1.0       | nd              |              | . nd         |              |              |         |
| Toluene                          | 1.0       | nd              | 101%         | nd           | 127%         | 84%          | 41%     |
| trans-1,3-Dichloropropene        | 1.0       | nd              |              | nd           | -            |              |         |
| 1,1,2-Trichloroethane            | 1.0       | nd              |              | nd           |              |              |         |
| 1,3-Dichloropropane              | 1.0       | nd              |              | nd           |              |              |         |
| Dibromochloromethane             | 1.0       | <sub>.</sub> nd |              | nd           |              |              |         |
| Tetrachloroethene                | 1.0       | nd              |              | nd           |              |              |         |
| 1,2-Dibromoethane (EDB)          | 1.0       | nd              |              | nd           |              |              |         |
| Chlorobenzene                    | 1.0       | nd              | 114%         | nd           | 138%         | 92%          | 40%     |
| 1,1,1,2-Tetrachloroethane        | 1.0       | nd              | -            | nd           |              |              |         |
| Ethylbenzene                     | 1.0       | nd              |              | nd           |              |              |         |
| Xylenes                          | 3.0       | nd              |              | nd           |              |              |         |
| Styrene                          | 1.0       | nd              |              | nd           |              |              |         |
| Bromoform                        | 1.0       | nd              |              | nd           |              |              |         |
| 1,1,2,2-Tetrachloroethane        | 1.0       | nd              |              | nd           |              |              |         |
| Isopropylbenzene                 | 1.0       | nd              |              | nd           |              |              |         |
| 1,2,3-Trichloropropane           | 1.0       | nd              |              | nd           |              |              |         |
| 3romobenzene                     | 1.0       | nd              |              | nd           |              |              |         |
| n-Propylbenzene                  | 1.0       | nd              |              | nd           |              |              |         |
| 2-Chlorotoluene                  | 1.0       | - nd            |              | nd           | ,            |              |         |
| 1-Chlorotoluene                  | 1.0       | nd              |              | nd           |              |              |         |
| 1,3,5-Trimethylbenzene           | 1.0       | nd              |              | nd           |              |              |         |
| ert-Butylbenzene                 | 1.0       | nd              |              | nd           |              |              |         |
| I,2,4-Trimethylbenzene           | 1.0       | nď              |              | nd           |              |              |         |
| ec-Butylbenzene                  | 1.0       | nd              |              | nd           |              |              |         |
| ,3-Dichlorobenzene               | 1.0       | nd-             |              | nd           |              |              |         |
| ,4-Dichlorobenzene               | 1.0       | nd              |              | nd           |              |              |         |
| sopropyltoluene                  | 1.0       | nd              |              | nd           |              |              |         |
| ,2-Dichlorobenzene               | 1.0       | nd              |              | nd           | -            |              |         |
| -Butylbenzene                    | 1.0       | nd              |              | nd           |              |              |         |
| ,2-Dibromo-3-Chloropropane       | 1.0       | nd<br>          |              | nd           |              |              |         |
| ,2,4-Trichlorobenzene            | 1.0       | nd              |              | nd           |              |              |         |
| laphthalene                      | 1.0       | nd              |              | nd<br>_ J    |              |              |         |
| lexachloro-1,3-butadiene         | 1.0       | nd              |              | nd           |              |              |         |
| ,2,3-Trichlorobenzene            | 1.0       | nd              |              | nd           |              |              |         |
| Surrogate recoveries             |           |                 |              |              |              |              |         |
| Dibromofluoromethane             |           | 108%            | 107%         | 108%         | 111%         | 126%         |         |
| oluene-d8<br>-Bromofluorobenzene |           | 121%<br>124%    | 122%<br>120% | 116%<br>127% | 120%<br>121% | 124%<br>121% |         |
|                                  |           |                 |              |              |              |              |         |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

Client:

S81117.3 WA. Dept. of Fish & Wildlife

Client Job Name:

Westlake

### Analytical Results

| Analytical Results           |           |          |          |          |          |          |     |
|------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| 8270, µg/L                   |           | MTH BLK  | LCS      | #1       | MS       | MSD      | RPD |
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water    |     |
| Date extracted               | Reporting | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08 |     |
| Date analyzed                | Limits    | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd       | •        |          | •   |
| 4-Nitroaniline               | 10.0      | nd       |          | nd       |          | ,        |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd       |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 125%     | nd       |          |          |     |
| Azobenzene                   | 2:0       | nd-      |          | nd-      |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd       |          |          |     |
| Pentachlorophenol            | 10.0      | nd       | •        | nd       |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | · nd,    |          |          |     |
| Anthracene                   | 0.2       | nd ·     |          | nd       |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       | -        |          |     |
| Fluoranthene                 | 0.2       | nd       | 114%     | nd       |          |          |     |
| Pyrene                       | 0.2       | nd       |          | nd       | 69%      | 71%      | 3%  |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd       |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd       |          |          | _   |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |          | •   |
| Chrysene                     | 0.2       | nd       |          | nd       |          | ,        |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 86%      | · nd     | -        |          |     |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 71%      | nd       |          |          | •   |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | —nd-     |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       |          |          | :   |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd       |          |          |     |
|                              |           |          |          |          |          |          |     |
| Surrogate recoveries         |           |          |          |          |          |          |     |
| 2-Fluorophenol               |           | 94%      | 108%     | 119%     | 86%      | 86%      |     |
| Phenol-d6                    |           | 93%      | 116%     | 125%     | 93%      | 92%      |     |
| Nitrobenzene-d5              |           | 109%     | 134%     | 115%     | 91%      | 89%      |     |
| 2-Fluorobiphenyl             |           | 87%      | 126%     | 107%     | 84%      | 84%      |     |
| 2,4,6-Tribromophenol         |           | 46%      | 41%      | 48%      | 50%      | 51%      |     |
| 4-Terphenyl-d14              |           | 73%      | 107%     | 81%      | 63%      | 61%      |     |

Data Qualifiers and Analytical Comments
nd - not detected at listed reporting limits
Acceptable Recovery limits:
2-Flurophenol: 10-135 %
Phenol - d5: 10-135 %
2,4,6- tribromophenol: 29-159%
Nitrobenzene - d5: 20-120 %
2

2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number: Client:

S81117.3 WA. Dept. of Fish & Wildlife Westlake

Client Job Name:

Analytical Results

| 8270, μg/L                    |             | MTH BLK  | LCS        | #1       | MS       | MSD .     | RPD  |
|-------------------------------|-------------|----------|------------|----------|----------|-----------|------|
| Matrix                        | Water       | Water.   | Water      | Water    | Water    | Water     |      |
| Date extracted                | Reporting   | 11/18/08 | 11/18/08   | 11/18/08 | 11/18/08 | 11/18/08  |      |
| Date analyzed                 | Limits      | 11/18/08 | . 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08. | :    |
| ,                             |             |          |            |          |          |           |      |
| Pyridine                      | 2.0         | nd       |            | nd       |          |           |      |
| Aniline                       | 2.0         | nd       |            | nd       | 0770/    | 500/      | 201  |
| Phenol                        | 2.0         | nd       |            | nd       | 87%      | 92%       | 6%   |
| 2-Chlorophenol                | 2.0         | . nd     |            | nd nd    | 107%     | 113%      | 5%   |
| Bis (2-chloroethyl) ether     | 2.0         | nd       |            | nd       |          |           |      |
| 1,3-Dichlorobenzene           | 2.0         | nd       | 44004      | nd-      | 1000/    | 40404     |      |
| 1,4-Dichlorobenzene           | 2.0         | nd       | 119%       | nd       | 102%     | 101%      | 1%   |
| 1,2-Dichlorobenzene           | 2.0         | nd       |            | nd       |          |           |      |
| N-methylpyrrolidone           | 2.0         | nd       |            | nd       |          |           |      |
| Benzyl alcohol                | 2.0         | nd       |            | nd       |          |           |      |
| 2-Methylphenol (o-cresol)     | 2.0         | nd       |            | nd       |          |           | •    |
| Bis (2-chloroisopropyl) ether | 10.0        | nd       |            | nd       |          |           |      |
| 3,4-Methylphenol (m,p-cresol) | 2.0         | nd       |            | nd       |          |           |      |
| Hexacholorethane              | 2.0         | nd       |            | - nd     |          |           |      |
| N-Nitroso-di-n-propylamine    | 2.0         | nd       |            | nd       | 116%     | 117%      | 1%   |
| Nitrobenzene                  | 2.0         | nd       |            | nd       |          |           |      |
| Isophorone                    | 2.0         | nd       |            | nd       |          |           |      |
| 2-Nitrophenol-                | 10.0        | nd       |            | nd       |          |           |      |
| 4-Nitrophenol                 | 10.0        | nd       |            | nd       |          |           |      |
| 2,4-Dimethylphenol            | 2.0         | nd       |            | nd       | 90%      | 94%       | 4%   |
| Bis (2-chloroethoxy) methane  | 2.0         | nd       |            | nd       |          |           |      |
| 2,4-Dichlorophenol            | 10.0        | nd       | •          | nd       |          |           |      |
| 1,2,4-Trichlorobenzene        | 2.0         | nd       |            | nd       | 117%     | 118%      | 1%   |
| Naphthalene                   | 2.0         | nd       |            | , nd     |          |           |      |
| 4-Chloroaniline               | 10.0        | nd       |            | nd       |          |           |      |
| Hexachlorobutadiene           | 2.0         | nd       | 131%       | nd       |          |           |      |
| 4-Chloro-3-methylphenol       | 10.0        | nd       | :          | nd       | 70%      | 73%       | 4%   |
| 2-Methylnapthalene            | 2.0         | nd       |            | nd       |          |           |      |
| 1-Methylnapthalene            | 2.0         | nd       |            | nd       |          |           |      |
| Hexachlorocyclopentadiene     | 2.0         | nd       |            | · nd     |          |           |      |
| 2,4,6-Trichlorophenol         | 10.0        | nd       |            | nd       |          |           |      |
| 2,4,5-Trichlorophenol         | 10.0        | nd       |            | nd       |          |           |      |
| 2-Chloronaphthalene           | 2.0         | nď       |            | nd       |          |           |      |
| 2-Nitroaniline                | 10.0        | nd       |            | nd       |          |           |      |
| 1,4-Dinitrobenzene            | 10.0        | nd       |            | nd       |          | •         |      |
| Dimethylphthalate             | 2.0         | nd       | •          | nd       |          |           |      |
| Acenaphthylene                | 0.2         | nd       |            | nd       |          |           |      |
| 1,3-Dinotrobenzene            | 10.0        | nd       |            | nd       |          |           |      |
| 2,6-Dinitrotoluene            | 2.0         | nd       |            | nd       |          |           |      |
| 1,2-Dinitrobenzene            | 2.0         | nd       |            | nd       |          |           |      |
| Acenaphthene                  | 0.2         | nd       | 131%       | nd       | 99%      | 98%       | 1%   |
| 3-Nitroaniline                | 10.0        | nd       | .0.70      | nd       | 0070     | 0070      |      |
| Dibenzofuran                  | 2.0         | nd       |            | nd       |          |           |      |
| 2.4-Dinitrotoluene            | 2.0         | nd       |            | nd       | 82%      | 80%       | 2%   |
| 2,3,4,6-Tetrachlorophenol     | 2.0         | nd       |            | r nd     | 02 /0    | 0070      | 2.70 |
| 2,3,5,6-Tetrachlorophenol     | 2:0         | nd       |            | nd       |          |           |      |
| 2,3,5,6-Tetrachiorophenor     | 2.0<br>10.0 | nd       |            | nd       |          |           |      |
| 2,4-Dinitrophenoi             | 0.2         | nd<br>nd |            | nd       |          |           |      |
| INDIGIE                       | U.Z         | nu       |            | Hu       |          |           |      |

| Environm<br>Services Ne |
|-------------------------|
| mental<br>Network       |

# CHAIN-OF-CUSTODY RECORD

| Control of the contro | 24 nn 46 na                                           | Tain Albaid inte. | -              |          |                                       |                                                |          |                         | 1             | NOTES        | Z              |               |          |                                         | Pickup   |                                                                                 | elum     | h D Return D                 | @ \$2.00 each | 1 1            | POSAL | [] ESN DISPOSAL | 10        |                             |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|----------------|----------|---------------------------------------|------------------------------------------------|----------|-------------------------|---------------|--------------|----------------|---------------|----------|-----------------------------------------|----------|---------------------------------------------------------------------------------|----------|------------------------------|---------------|----------------|-------|-----------------|-----------|-----------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   | $\dagger$      |          | Ē                                     | 2                                              | Ş        | KECEIVED GOOD COND COLD | È             |              | 12             |               |          |                                         |          | Š                                                                               | YOU      | SAMPLE DISPOSAL INSTRUCTIONS | SAL IN        | DISPO          | MPLE  | LAS             |           |                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   | $\dagger$      |          |                                       |                                                | 3        | SEALS INTACT? YINNA     | NTA           | NE SE        | 100            |               |          |                                         |          | ·                                                                               |          | -                            |               |                |       |                 | İ         |                             |          |
| 70100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the Course                                            | I My Otayor I     | $\dagger$      | \$       | SEALS TIMINA                          | 1                                              | 100      | CHAIN OF CUSTOUY        | 100           | 2            |                | DATE/TIME     | DATE     | .ಅ                                      | malur    | 1S) A:                                                                          | VED E    | RECEIVED BY (Signature)      | •••           | DATE/TIME      |       | (e              | Y (Signat | RELINQUISHED BY (Signature) | RELIN    |
| )<br>[]<br>]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥ <del>2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2</del> |                   | $\dagger$      |          | TOTAL NUMBER OF CONTAINERS            | Z X                                            |          | BER C                   | NUM           | ĮŽ.          |                | 16:00m        | 17/17    | ١                                       | 250      | 13                                                                              | rex      | A                            | o`            | 1430           |       | ميعار           | Janus Jan | and It                      | X        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ES:                                                   | LABORATORY NOTI   | T              |          | 4                                     | CEF                                            | <u>R</u> | SAMPLE RECEIPT          | 6             |              | 丄              | DATECTIME     | Υૅટ      | ۳                                       | mere     | NS) X                                                                           | VED 8    | RECEIVED BY (Signature)      |               | DATE/TIME      | D.    | )               | Y (Signat | RELINQUISHED BY (Signature) | RELIN    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | H        |                                       |                                                | -        | -                       | -             | <u> </u>     |                |               | -        |                                         | -        |                                                                                 |          |                              | -             |                | ·     |                 |           |                             | 18.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                     |                   |                | +        |                                       |                                                | 十        | +                       | -             | _            |                | $\vdash$      | -        |                                         | $\vdash$ | L                                                                               |          |                              | -             |                |       |                 |           |                             | 17.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | +        | +                       | -             | <u> </u>     |                | $\vdash$      | -        |                                         | $\vdash$ |                                                                                 |          |                              | $\vdash$      |                |       |                 |           |                             | 16.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | $\vdash$ | ├-                      | ┞-            | _            |                |               | -        |                                         | -        | Ĺ                                                                               |          |                              | -             |                |       | _               |           |                             | 15.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | +        | L                                     |                                                | $\vdash$ | $\vdash$                | +             | <del> </del> | I              | -             | $\vdash$ |                                         | -        |                                                                                 |          |                              | +             |                |       |                 |           |                             | 14.      |
| <u>L</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                   |                | +        | L                                     | İ                                              | +        | ┼-                      | 1             | <u> </u>     |                | <del> -</del> | ├-       |                                         | -        |                                                                                 |          |                              | +             |                |       |                 |           |                             | 13.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | $\vdash$ |                                       |                                                | $\vdash$ | -                       | _             | _            |                | _             | _        |                                         | -        |                                                                                 |          |                              | -             |                |       | Ŀ               |           |                             | 12.      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                   |                | ╀        |                                       |                                                | +        | <del> </del>            | -             | ļ.           |                |               | -        |                                         | -        |                                                                                 |          |                              | -             |                |       |                 |           |                             | <b>1</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | +        | $\vdash$                | -             | 1            |                | $oxed{T}$     | _        |                                         | -        |                                                                                 |          |                              | -             |                |       |                 |           |                             | 10.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | $\vdash$ |                                       |                                                | +        | -                       | -             |              |                |               | -        |                                         | _        |                                                                                 |          |                              | -             |                |       |                 |           |                             | 9        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | -        | -                       | <u> </u>      | <u> </u>     |                |               | -        |                                         | -        |                                                                                 |          | -                            | -             |                |       |                 |           |                             | œ        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | +        |                                       |                                                | -        | +                       | -             | -            |                | $\vdash$      | -        |                                         | -        |                                                                                 |          |                              | -             |                |       |                 |           |                             | 7        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | $\vdash$ |                                       |                                                | +        | +                       | -             | <u> </u>     |                |               | -        |                                         | <u> </u> |                                                                                 |          |                              | -             |                |       |                 |           |                             | 6.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | +        | <del> </del>            | -             | _            |                |               | -        |                                         | <u> </u> |                                                                                 |          | Park of                      | 2             |                | 2010  | 5               |           |                             | Ç.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | $\vdash$ |                                       |                                                | $\vdash$ | -                       | <u> </u>      | _            |                |               |          |                                         |          |                                                                                 |          | Duner                        | a)            |                | 1000  | 1/6             |           |                             | 4.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | -        | -                       | _             |              |                |               | _        |                                         | _        |                                                                                 |          | くえて                          | <             |                | 085b  | <i>f</i> =.     |           |                             | ယ        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | -        |                                       |                                                | $\vdash$ | -                       | _             |              |                |               | _        |                                         | -        |                                                                                 |          | NAT.                         | <u>K</u>      |                | 0856  | 4e              |           |                             | 2.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                | $\vdash$ |                                       |                                                | $\vdash$ |                         | <del>  </del> | <u> </u>     |                | -             |          |                                         | X        |                                                                                 |          | とざつ                          | <u> </u>      |                | 0656  | =               |           |                             | 1        |
| of Containers<br>Laboratory<br>Note Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Number                                          | NOTES             |                |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 16 6 66 7 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | 2 8 1                   | 18/18         | 3/3/9/       | 17 6 ( 18 18 ) | (3)(3)        |          | 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Sele 1   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                        | <u> </u> | Container Type               |               | Sample<br>Type | Time  | Depth           | ٠.        | Sample Number               | Sa       |
| 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COLLECTION 11/13/08                                   | Mispiewski        | 1005           | 3        | COLLECTOR: J.                         | Ä                                              | )<br>CZ  | ĬĔ                      | 8             | 116          | 16.6           | 14            | 15       | 77.                                     | AGE      | MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>MA<br>M | 12       | PROJECT MANAGER: ハルチルいの      |               |                |       | #               | JECT      | CLIENT PROJECT #:           | 5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   | Pend Bloom     | R        | Pen                                   | 2                                              | NO.      | LOCATIO                 | 5             | 1.           |                |               |          |                                         |          |                                                                                 | FAX:     | - FJ                         |               | 4              | 46    | e4-             | 2 CO      | PHONE: (509) 744- 4624      | PHO      |
| là,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEWARD FIRE                                           | 1 7               | NAME: WESTLAKE | EBCI     | ij                                    | NA                                             | CT       | PROJECT                 | PR            |              |                |               |          | WA                                      | 君        | EPHRATA                                                                         | Ep       | ٦                            | · Hw          | 75             | er    | Ris             | 550       | ADDRESS: 1550 ALDER ST      | ADI      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF                                                    | PAGE (            |                | 08       | 13                                    | 7                                              | =        | DATE: 1                 | DA            | <u> </u>     |                |               |          |                                         | `        | $ \mathcal{T}_{\mathcal{D}} $                                                   | 2        | たいけんかいなりたち                   | 7             | 7              |       | H               | UA Y      | CLIENT: WA DEPT             | <u>단</u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                   |                |          |                                       |                                                |          |                         |               |              |                |               |          |                                         | -        |                                                                                 |          |                              |               |                |       |                 |           |                             |          |

### POST-REHABILITATION REPORT

### North Potholes (Westlake Ponds)

WATER: TD2 Ponds (between Desert and Harris Lakes)

**LOCATION:** Grant Co.; Sections 35 & 36, T18N, R27E; consisting of ponds between Desert and Harris Lakes.

DATE(S) TREATED: October 6, 2008

**PURPOSE:** Eliminate fish from selected ponds to enhance conditions for breeding waterfowl.

**LISENCED APPLICATOR:** Jeffrey W. Korth, WA Dept Fish and Wildlife (DFW), District 5 Fisheries Biologist, Pesticide License # 39429.

**LAKE DESCRIPTION**: At the time of treatment, the treatment area (TA) contained 12 small ponds; water level was about 1 ft below high water mark:

Surface acres: 61.4

Depth: average 1.5 ft; maximum 3.3 ft

Volume: ~104 acre-feet

Weight of Water: 282,876,007 lbs

Connectivity: subterranean flows; no surface inlets or outlets. 12 separate ponds were

treated.

### TREATMENT DESCRIPTION:

Toxicant/methods used: Rotenone; Liquid CFT Legumine EPA Reg # 75338-2

62 gal. liquid formulation, 5% equivalent

Total Concentration Applied: 3.0 ppm

All liquid sprayed by helicopter Detoxification Procedures: None.

### PHYSICAL CHARACTERISTICS OF THE LAKE/WATER DURING TREATMENT:

Weather - Sunny, 2-5 mph easterly wind, air temp = 47-66F, avg. 56

**Pre-treatment water quality parameters** – Data was collected from 1 representative pond. Due to shallowness of waters, only a surface water sample was collected.

| Pond ID | Date    | pН   | temp . |
|---------|---------|------|--------|
| Pond 8  | 10/4/08 | 7.70 | 18C    |

### SPECIES ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

1) Pumpkin seed (100's)

**PRE- AND POST- TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009):

*Impact to non-targeted organisms* – Zooplankton were sampled for diversity and abundance just prior to treatment, six months post treatment, and will again be sampled 12 months post treatment. Samples were taken from pond 8. Samples are currently being processed, and the results will be available by separate report.

Liquid rotenone formulation longevity — Water samples were taken at 24 hours and four weeks post treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Water samples were taken from a moderate sized pond centrally located within the TA (pond 8). Samples were sent to an accredited lab for analyses per EPA methods. All 23 volatile and semi-volatile organic compounds possibly present in liquid rotenone formulations, including benzene, tolulene, phenol, xylene, acetone, acenapthalene, fluorine, and derivatives of these compounds, were below detection limits in the 24-hour and four-week post-treatment samples.

**Period of Toxicity** – The bioassay with rainbow trout in a live-box was conducted from November 21 through November 25. Fourteen fingerling (~2") rainbow trout were placed in a live-box in Pond 8 at 9:30 am November 21<sup>st</sup> and all fish were alive at 1:45 pm November 25th. Given the relatively warm water temperature, shallow water, and high organic content of the ponds, rotenone longevity was probably less than one week, and certainly less than four weeks. Fish stocking was not planned for these waters.

### **DESCRIPTION OF TREATMENT AND OTHER COMMENTS:**

The fall 2008 treatment of TD2 was accomplished entirely with liquid rotenone. The wetland area consists of shallow ponds associated with the Winchester Wasteway between Dodson Rd and Potholes Reservoir between Desert and Harris Lakes. These ponds are typically at their lowest during fall, when treatment occurred. A helicopter was used to spray 123 gallons of liquid rotenone over all open water in the TA on the day of treatment.

The TD2 project area was surveyed for fish presence on April 27 and May 22, 2007. 6 ponds were gill-netted. Fish were successfully netted from 50% of ponds sampled (pumpkinseed was the only fish species detected). One pond (Pond 2) netted 33 pumpkinseed, the other 2 ponds with fish had <10 pumpkinseed each. Because pumpkinseed are not effectively caught with gill nets, it was assumed that all ponds had the potential to contain pumpkinseed.

Ponds were not sampled post-treatment but it is likely that 100's of pumpkinseeds were killed. Pumpkinseed are quickly consumed by predators and because the treatment occurred in the late afternoon, it was not possible to survey prior to nightfall. It was assumed that most fish were removed overnight and thus no formal survey was planned. However, during water quality sampling 24 hours later, no fish were observed around the SE edge of pond 8. Casual observations at ponds 4 and pond 6 also revealed no dead fish.

**Cost**: About 16 man-days (man-day = 8 hrs) were required to complete the rehabilitation of the Westlake Ponds, from pre-rehabilitation proposals to post-treatment reports (not including Fish Program planning, meetings, equipment procurement, etc common to all rehabilitations done this FY). Treatment alone required a crew of 4 people for most of one day. Total cost of the project (rotenone, helicopter, labor, travel, expendable equipment) was approximately \$10,000, including \$6,750 for rotenone (liquid @ \$55/gal) and \$1,500 for the helicopter application.

The TA will continue to be managed as fish-free to enhance conditions for breeding waterfowl.

Rich Finger, Biologist WDFW Region 2 Wildlife Program

WA Dept. of Fish & Wildlife TD2 REHAB PROJECT Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

Analytical Results

| 8260, µg/L (Water)               | Reporting | MTH BLK         | LCS                     | #1           | MS<br>11/19/08 | MSD<br>11/19/08 | 11/19/08 |
|----------------------------------|-----------|-----------------|-------------------------|--------------|----------------|-----------------|----------|
| Date analyzed                    | Limits    | 11/19/08        | 11/19/08                |              | 11119100       | 11/19/00        | 11/15/00 |
| Dichlorodifluoromethane          | 1.0       | nd              |                         | nd           | •              |                 |          |
| Chloromethane                    | 1.0       | nd              |                         | nd           |                |                 |          |
| Vinyl chloride                   | 0.2       | nd              |                         | nd           |                |                 |          |
| Bromomethane                     | 1.0 .     | nd              |                         | nd           |                |                 |          |
| Chloroethane                     | 1.0       | nd              |                         | nd           |                |                 |          |
| Trichlorofluoromethane           | 1.0       | nd              |                         | nd           |                | ,               |          |
| 1,1-Dichloroethene               | 1.0       | nd              | 63%                     | nd           | 87%            | 65%             | 29%      |
| Methylene chloride               | 1.0       | nd              |                         | nd           |                |                 |          |
| MTBE                             | 1.0       | nd              |                         | nd           |                |                 |          |
| trans-1,2-Dichloroethene         | 1.0       | nd              |                         | nd           |                |                 |          |
| 1,1-Dichloroethane               | 1.0       | nd              |                         | nd           |                |                 |          |
| cis-1,2-Dichloroethene           | 1.0       | nd              |                         | - nd         |                |                 |          |
| 2.2-Dichloropropane              | 1.0       | nd              |                         | nd           |                | •               |          |
| Chloroform                       | 1.0       | nd              |                         | nd           |                |                 |          |
| Bromochloromethane               | 1:0       | nd              |                         | nd           |                |                 |          |
| 1,1,1-Trichloroethane            | 1.0       | nd              |                         | nd           |                |                 |          |
| 1,2-Dichloroethane (EDC)         | 1.0       | nd              |                         | nd           |                |                 |          |
| 1,1-Dichloropropene              | 1.0       | nd              |                         | nd           |                |                 |          |
| Carbon tetrachloride             | 1.0       | nd              |                         | nd           |                |                 |          |
| Benzene                          | 1.0       | nd              | 102%                    | nd           | 121%           | 85%             | 35%      |
|                                  | 1.0       | nd              | 108%                    | nd           | 128%           | 86%             | 39%      |
| Trichloroethene                  | 1.0       | nd              | 10070                   | nd           | 12.070         | 5070            | 007      |
| 1,2-Dichloropropane              |           |                 |                         |              |                |                 |          |
| Dibromomethane                   | 1.0       | nd ·            |                         | nd           |                |                 |          |
| Bromodichloromethane             | 1.0       | nd              |                         | nd           |                |                 |          |
| cis-1,3-Dichloropropene          | 1.0       | nd              | 48404                   | nd           | 40777          |                 | 440/     |
| Toluene                          | 1.0       | nd              | 101%                    | nd           | 127%           | 84%             | 41%      |
| trans-1,3-Dichloropropene        | 1.0       | nđ              |                         | nd           |                |                 |          |
| 1,1,2-Trichloroethane            | 1.0       | nd              |                         | nd           |                |                 |          |
| 1,3-Dichloropropane              | 1.0       | nd              |                         | nd           |                |                 |          |
| Dibromochloromethane             | 1.0       | nd              |                         | nd           |                |                 |          |
| Tetrachloroethene                | 1.0       | nd              |                         | nd           |                |                 |          |
| 1,2-Dibromoethane (EDB)          | 1.0       | nd              |                         | nd           |                |                 | *        |
| Chlorobenzene                    | 1.0       | nd              | 114%                    | nd           | 138%           | 92%             | 40%      |
| 1,1,1,2-Tetrachloroethane        | 1.0       | nd              |                         | nd           |                |                 |          |
| Ethylbenzene                     | 1.0       | nd              |                         | nd           |                |                 |          |
| Kylenes                          | 3.0       | nd              |                         | nd           |                |                 |          |
| Styrene                          | 1.0       | nd <sup>'</sup> |                         | nd           |                |                 |          |
| 3romoform                        | 1.0       | nd              |                         | nd           |                | •               |          |
| 1,1,2,2-Tetrachloroethane        | 1.0       | nd              |                         | nd           |                |                 |          |
| sopropylbenzene                  | 1.0       | nd              |                         | nd           |                |                 |          |
| 1,2,3-Trichloropropane           | 1.0       | nd              |                         | nd           |                |                 |          |
| 3romobenzene                     | 1.0       | nd              |                         | nd           |                |                 |          |
|                                  | 1.0       | nd              |                         | nd           |                |                 |          |
| n-Propylbenzene                  | 1.0       | nd              |                         | nd           |                |                 |          |
| 2-Chlorotoluene                  |           |                 |                         | nd           |                |                 |          |
| I-Chlorotoluene                  | 1.0       | nd              |                         |              |                |                 |          |
| 1,3,5-Trimethylbenzene           | 1.0       | nd              |                         | nd           |                |                 |          |
| ert-Butylbenzene                 | 1.0       | nď              |                         | nd           |                |                 |          |
| ,2,4-Trimethylbenzene            | 1.0       | nd              |                         | nd           |                |                 | ,        |
| seć-Butylbenzene                 | 1.0       | nd              |                         | nd           |                |                 |          |
| ,3-Dichlorobenzene               | 1.0       | nd              |                         | · nd         |                |                 |          |
| ,4-Dichlorobenzene               | 1.0       | nd              |                         | nd           |                |                 |          |
| sopropyltoluene                  | 1.0       | nd              |                         | nd           |                |                 |          |
| ,2-Dichlorobenzene               | 1.0       | nd              |                         | nd           |                |                 |          |
| -Butylbenzene                    | 1.0       | . nd            |                         | nd           |                |                 |          |
| ,2-Dibromo-3-Chloropropane       | 1.0       | nd              |                         | nd           |                |                 |          |
| ,2,4-Trichlorobenzene            | 1.0       | nd              |                         | . nd         |                |                 |          |
| laphthalene                      | 1.0       | nd              |                         | nd           |                |                 |          |
| lexachloro-1,3-butadiene         | 1.0       | nd              |                         | nd           |                |                 |          |
| ,2,3-Trichlorobenzene            | 1.0       | ind             |                         | nd           |                |                 |          |
|                                  |           |                 |                         |              |                |                 |          |
| Surrogate recoveries             |           | 4654            | 40***                   | 40004        | 44407          | 1000/           |          |
| ibromofluoromethane<br>oluene-d8 |           | 108%<br>121%    | 107%<br>122%            | 108%<br>116% | 111%<br>120% - | 126%<br>124%    |          |
|                                  |           | 14-170          | ( <u>~</u> <u>~</u> / U | 1 10 /0      | 12010 -        | 1 - T /U        |          |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

### ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

Client:

WA. Dept of Fish & Wildlife

Client Job Name:

TD2 Rehab

### Analytical Results

| 8270, µg/L                   |           | MTH BLK  | LCS      | #1       | MS       | MSD                                     | RPD         |
|------------------------------|-----------|----------|----------|----------|----------|-----------------------------------------|-------------|
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water                                   |             |
| Date extracted               | Reporting | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08                                |             |
| Date analyzed                | Limits    | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08 | 11/18/08                                | •           |
|                              |           |          |          |          |          |                                         |             |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |                                         |             |
| Diethylphthalate             | 2.0       | nd       |          | nd       |          |                                         |             |
| 4-Nitroaniline               | 10.0      | nd       | •        | nd       |          |                                         |             |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       | •        | nd       |          |                                         |             |
| N-nitrosodiphenylamine       | 2.0       | nd       | 125%     | nd       |          |                                         |             |
| Azobenzene                   | 2.0       | nd-      |          | nd       |          | • • • • • • • • • • • • • • • • • • • • |             |
| 4-Bromophenylphenylether     | 2.0       | · nd     |          | nd       | •        |                                         |             |
| Hexachlorobenzene            | 2.0       | nd       |          | nd       |          |                                         |             |
| Pentachlorophenol            | 10.0      | nd       | *        | nd       | 1        |                                         | -           |
| Phenanthrene                 | 0.2       | . nd     |          | nd       |          | •                                       |             |
| Anthracene                   | 0.2       | nd       | -        | · nd     |          | •                                       |             |
| Carbazole                    | 2.0       | nd -     |          | nd       |          |                                         |             |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       |          |                                         |             |
| Fluoranthene                 | 0.2       | nd       | 114%     | nd       |          |                                         |             |
| Pyrene                       | 0.2       | · nd     |          | ņd       | 69%      | 71%                                     | 3%          |
| Butylbenzylphthalate         | 2.0       | nd       | •        | nd       |          |                                         |             |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd-      |          |                                         |             |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |                                         |             |
| Chrysene                     | 0.2       | nd       |          | nd       |          |                                         |             |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd       |          |                                         |             |
| Di-n-octyl phthalate         | 2.0       | nd       | 86%      | nd       |          |                                         |             |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |                                         |             |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd       |          | •                                       |             |
| Benzo(a)pyrene               | 0.2       | nd -     | 71%      | nd       | •        |                                         |             |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd       |          |                                         |             |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       | *        |                                         |             |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd       | •        |                                         |             |
|                              |           |          |          |          |          |                                         | <del></del> |
| Surrogate recoveries         |           |          |          |          |          |                                         |             |
| 2-Fluorophenol               |           | 94%      | 108%     | 128%     | . 86%    | 86%                                     |             |
| Phenol-d6                    |           | 93%      | 116%     | 134%     | 93%      | 92%                                     |             |
| Nitrobenzene-d5              |           | 109%     | 134%     | 111%     | 91%      | 89%                                     |             |
| 2-Fluorobiphenyl             |           | 87%      | 126%     | 110%     | 84%      | 84%                                     |             |
| 2,4,6-Tribromophenol         |           | 46%      | 41%      | 52%      | 50%      | 51%                                     |             |
| 4-Terphenyl-d14              |           | 73%      | 107%     | 86%      | 63%      | 61%                                     |             |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits:
2-Flurophenol: 10-135 %
Phenol - d5: 10-135 %
2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number: Client:

S81117.4 WA. Dept of Fish & Wildlife TD2 Rehab

Client Job Name:

Analytical Results

| 8270, µg/L                             |             | MTH BLK  | LCS      | #1         | MS       | MSD      | RPD  |
|----------------------------------------|-------------|----------|----------|------------|----------|----------|------|
| Matrix                                 | Water       |          | Water    | Water      | Water    | Water    |      |
| Date extracted                         | Reporting   | 11/18/08 | 11/18/08 | 11/18/08   | 11/18/08 | 11/18/08 |      |
| Date analyzed                          | Limits      | 11/18/08 | 11/18/08 | 11/18/08   | 11/18/08 | 11/18/08 | -    |
| Pyridine                               | 2.0         | nd       |          | nd         |          |          |      |
| Aniline                                | 2.0         | nd       |          | nd         |          |          |      |
| Phenol                                 | 2.0         | nd       |          | nd         | 87%      | 92%      | 6%   |
| 2-Chlorophenol                         | 2.0         | nd       |          | nd         | 107%     | 113%     | 5%   |
| Bis (2-chloroethyl) ether              | 2.0         | nd       |          | nd         |          |          |      |
| 1,3-Dichlorobenzene                    | ··· 2:0     | nd       |          | nd-        |          |          |      |
| 1,4-Dichlorobenzene                    | 2.0         | nd       | 119%     | nd         | 102%     | 101%     | 1%   |
| 1,2-Dichlorobenzene                    | 2.0         | nd       |          | nd         |          |          |      |
| N-methylpyrrolidone                    | 2.0         | nd       |          | nd         |          |          | *    |
| Benzyl alcohol                         | 2.0         | nd       | •        | nd         |          |          |      |
| 2-Methylphenol (o-cresol)              | 2.0         | nd       |          | nd         |          |          |      |
| Bis (2-chloroisopropyl) ether          | 10.0        | nd       |          | nd         |          |          |      |
| 3,4-Methylphenol (m,p-cresol)          | 2.0         | nd       |          | nd         |          |          |      |
| Hexacholorethane                       | 2.0         | nd       |          | nd         |          | •        |      |
| N-Nitroso-di-n-propylamine             | 2.0         | nd       |          | nd         | 116%     | 117%     | 1%   |
| Nitrobenzene                           | 2.0         | nd       |          | nd         | 11070    | ,        | . 70 |
| Isophorone                             | 2.0         | nd       |          | nd         |          |          |      |
| 2-Nitrophenol                          | 10.0        | nd       |          | nd         |          |          |      |
|                                        | 10.0        | nd       |          | , nd       |          |          |      |
| 4-Nitrophenol 2.4-Dimethylphenol       | 2.0         | nd       |          | nd         | 90%.     | 94%      | 4%   |
|                                        | 2.0         | nd       |          | nd         | 3070.    | 3470     | - 70 |
| Bis (2-chloroethoxy) methane           | 10.0        | nd       |          | nd         |          |          |      |
| 2,4-Dichlorophenol                     | 2.0         | · nd     |          | nd         | 117%     | 118%     | 1%   |
| 1,2,4-Trichlorobenzene                 | 2.0         | nd       |          | nd         | 11770    | 11070    | 1 70 |
| Naphthalene                            | 10.0        | . nd     |          | . nd       |          |          |      |
| 4-Chloroaniline<br>Hexachlorobutadiene | 2.0         | nd       | 131%     | nd         |          |          |      |
| 4-Chloro-3-methylphenol                | 10.0        | nd       | 13170    | nd         | 70%      | 73%      | 4%   |
|                                        | 2.0         | nd       |          | nd         | 7070     | 7370     | 770  |
| 2-Methylnapthalene                     | 2.0         | nd       |          | nd         |          |          |      |
| 1-Methylnapthalene                     | 2.0         | nd       |          | . nd       |          |          |      |
| Hexachlorocyclopentadiene              | 10.0        | nd       |          | nd         |          |          |      |
| 2,4,6-Trichlorophenol                  | 10.0        | nd       |          | nd         |          |          |      |
| 2,4,5-Trichlorophenol                  | 2.0         | nd       |          | nd         |          |          |      |
| 2-Chloronaphthalene                    | 10.0        | nd nd    |          | nd         |          |          |      |
| 2-Nitroaniline                         | 10.0        | nd       |          | nd         | •        |          |      |
| 1,4-Dinitrobenzene                     | 2.0         | nd       |          | nd         | •        |          |      |
| Dimethylphthalate                      | 0.2         | nd       |          | nd         |          |          |      |
| Acenaphthylene                         |             |          |          |            |          |          |      |
| 1,3-Dinotrobenzene                     | 10.0<br>2.0 | nd<br>   |          | nd<br>nd . |          |          |      |
| 2,6-Dinitrotoluene                     |             | nd       |          | -          |          |          |      |
| 1,2-Dinitrobenzene                     | 2.0         | nd       | 4240/    | nd<br>nd   | 000/     | 000/     | 40/  |
| Acenaphthene                           | 0.2         | nd       | 131%     | nd         | . 99%    | 98%      | 1%   |
| 3-Nitroaniline                         | 10.0        | nd       |          | nd         |          |          |      |
| Dibenzofuran                           | 2.0         | nd<br>   |          | nd         | 000/     | 900/     | 00/  |
| 2,4-Dinitrotoluene                     | 2.0         | nd<br>   |          | nd<br>nd   | 82%      | 80%      | 2%   |
| 2,3,4,6-Tetrachlorophenol              | 2.0         | nd<br>   |          | nd         |          |          |      |
| 2,3,5,6-Tetrachlorophenol              | 2.0         | nd       |          | nd         | •        |          | •    |
| 2,4-Dinitrophenol                      | 10.0        | nd       |          | nd         |          |          |      |
| Fluorene                               | 0.2         | nd       |          | nd         |          |          |      |

| )              | Environmental Services Network |
|----------------|--------------------------------|
| DATE: 11/12/08 | CHAI                           |
| of PAGE OF     | CHAIN-OF-CUSTODY RECORD        |

| ☐ ESN DISPOSAL @ \$2.00 each        | SAMPLE DISPOSAL INSTRUCTIONS |                     | :D BY\Signature) DATE/TIME      | 1/13/08 10:00 apr          | RELINQUISHED BY (Signature) DATE/TIME F | 18. | 17 | 16. | 5 | 14 | Ġ. | 12. | = | 10. | 9. | 8 | 7 | Ō | 5. Vial | 4. | 3. | 2. Pint | 1.   S   1:30pm   PMF | Sample Number Depth Time Type Contak              | CLIENT PROJECT #: PF         | PHONE: 509-754-4624 | ADDRESS: 1550 Alder St NW |  |
|-------------------------------------|------------------------------|---------------------|---------------------------------|----------------------------|-----------------------------------------|-----|----|-----|---|----|----|-----|---|-----|----|---|---|---|---------|----|----|---------|-----------------------|---------------------------------------------------|------------------------------|---------------------|---------------------------|--|
| ☐ Return ☐ Pickup NOTES:            |                              |                     | CEIVED BY (Signature) DATE/TIME | Jan Horox 10:00an          | RECEIVED BY (Signature) DATE/TIME       |     |    |     |   |    |    |     |   |     |    |   |   |   | ù\      |    |    |         |                       | 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.         | PROJECT MANAGER: Rich Finger | FAX: 509-754-5257   | Ephraty WA 98823          |  |
| res:                                | RECEIVED GOOD COND /COLD     | SEALS INTACT? YAVNA | CHAIN OF CUSTODY SEALS YAVNA    | TOTAL NUMBER OF CONTAINERS | SAMPLE RECEIPT                          |     |    |     |   |    |    |     |   |     |    |   |   |   |         |    |    |         |                       | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            | COLLECTOR: Rich              | LOCATION: TD 2      | PROJECT NAME: 102         |  |
| Turn Around Time: 24 HR 48 HR 5 DAY | )                            | Methy) pyrrollogue  | W 0£78                          | Sallo and                  | LABORATORY NOTES:                       |     |    |     |   |    |    |     |   |     |    |   |   |   |         |    |    |         |                       | Total Number of Containers Laboratory Note Number | Finger COLLECTION 11/12/08   | Pond 8              | Rehab                     |  |

WA Dept. of Fish & Wildlife TD2 REHAB PROJECT

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com (360) 459-3432

| 8260, μg/L (Water)                             |            | NTH BLK   | LCS      | Pond 8   | MS       | MSD      | RPI            |
|------------------------------------------------|------------|-----------|----------|----------|----------|----------|----------------|
| Partition of mild                              | Reporting  | 4011 C100 | 10/15/08 | 10/15/08 | 10/15/08 | 10/15/08 |                |
| Date analyzed                                  | Limits     | 10/15/08  | 10/10/00 | 10/15/08 | 10/10/06 | 10/10/08 | and the second |
| Dichlorodifluoromethane                        | 1.0        | nd        |          | ηd       |          |          |                |
| Chloromethane                                  | 1.0        | nd        |          | nd       |          |          |                |
| Vinyl chloride                                 | 0,2        | nd        |          | nd       |          |          |                |
| Bromomethane                                   | 1.0        | nd        |          | nd       |          |          |                |
| Chloroethane                                   | 1.0        | nd        |          | nd       |          |          |                |
| Trichlorofluoromethane                         | 1.0        | nd        | 700      | . nd     | 2004     | 700/     | 400            |
| 1,1-Dichloroethene                             | 1.0        | nd        | 78%      | nd       | 89%      | 78%      | 13%            |
| Methylene chloride                             | 1,0<br>1,0 | nd        |          | nd<br>nd |          |          |                |
| trans-1,2-Dichloroethene<br>1,1-Dichloroethane | 1.0        | nd<br>nd  |          | nd       |          |          |                |
| cis-1,2-Dichloroethene                         | 1.0        | nd        |          | nd       |          |          |                |
| 2,2-Dichloropropane                            | 1.0        | nd        |          | nd       |          |          |                |
| Chloroform                                     | 1.0        | nd        |          | nd       |          |          |                |
| Bromochloromethane                             | 1.0        | nd        |          | nd       |          |          |                |
| 1,1,1-Trichloroethane                          | 1.0        | nd        |          | nd       |          |          |                |
| 1,2-Dichloroethane                             | 1.0        | nd        |          | nd       |          |          |                |
| 1,1-Dichloropropene                            | 1.0        | nd        |          | nd       |          |          |                |
| Carbon tetrachloride                           | 1,0        | nd        |          | nd       |          |          |                |
| Benzene                                        | 1.0        | nd        | 93%      | nd       | 100%     | 90%      | 119            |
| Trichloroethene                                | 1.0        | nd        | 92%      | nd       | 104%     | 91%      | 13%            |
| 1,2-Dichloropropane                            | 1.0        | nd        |          | nd       |          |          |                |
| Dibromomethane                                 | 1.0        | nd        |          | nd       |          |          |                |
| Bromodichloromethane                           | 1.0        | nd        |          | , nd     |          |          |                |
| cis-1,3-Dichloropropene                        | 1.0        | nd        | 000      | nd       | 4000/    | 020/     | 540            |
| Toluene                                        | 1.0        | nd        | 86%      | nd<br>nd | 102%     | 83%      | 219            |
| trans-1,3-Dichloropropene                      | 1.0<br>1.0 | nd        |          | nu<br>nd |          |          |                |
| 1,1,2-Trichloroethane<br>1,3-Dichloropropane   | 1.0        | nd<br>nd  |          | nd       |          |          |                |
| Dibromochloromethane                           | 1.0        | nd        |          | . nd     |          |          |                |
| Tetrachloroethene                              | 1.0        | nd        |          | nd       |          | *        |                |
| 1,2-Dibromoethane (EDB)                        | 1.0        | nd        |          | nd       |          |          |                |
| Chlorobenzene                                  | 1.0        | nd        | 96%      | nd       | 106%     | 89%      | 179            |
| 1,1,1,2-Tetrachloroethane                      | 1.0        | nd        |          | nd       |          |          |                |
| Ethylbenzene                                   | 1.0        | nd        |          | nd       |          |          |                |
| Xylenes                                        | 1.0        | nd        |          | nd       |          |          |                |
| Slyrene                                        | 1.0        | nd        |          | nd       |          |          |                |
| Bromoform                                      | 1.0        | nd        |          | nd       |          |          |                |
| 1,1,2,2-Tetrachloroethane                      | 1.0        | nd.       |          | nd       |          |          |                |
| Isopropylbenzene                               | . 1.0      | nd        |          | nd       |          |          |                |
| 1,2,3-Trichloropropane                         | 1.0        | nd        |          | nd       |          |          |                |
| Bromobenzene                                   | 1.0        | nd        |          | nd       |          |          |                |
| n-Propylbenzene                                | 1.0        | nd        |          | nd       |          |          |                |
| 2-Chlorotoluene                                | 1.0<br>1.0 | nd<br>nd  |          | nd<br>nd |          |          |                |
| 4-Chlorotoluene<br>1,3,5-Trimethylbenzene      | 1.0        | nd        |          | nd       |          |          |                |
| tert-Bulvibenzene                              | 1.0        | nd        |          | nd       |          |          |                |
| 1,2,4-Trimelhylbenzene                         | 1.0        | nd        |          | nd       |          |          |                |
| sec-Bulylbenzene                               | 1.0        | nd        |          | nd       |          |          |                |
| 1,3-Dichlorobenzene                            | 1.0        | nd        |          | nd       |          |          |                |
| 1,4-Dichlorobenzene                            | 1.0        | nd        |          | nd       |          |          |                |
| sopropylloluene                                | 1.0        | nd        |          | nd       |          |          |                |
| 1,2-Dichlorobenzene                            | 1.0        | nd        |          | nd       |          |          |                |
| n-Bulylbenzene                                 | 1.0        | nd        |          | nd       |          |          |                |
| 1,2-Dibromo-3-Chloropropar                     | 1.0        | nd        |          | nd       |          |          |                |
| 1,2,4-Trichlorobenzene                         | 1.0        | nđ        |          | nd       |          |          |                |
| Vaphthalene                                    | 1.0        | nd        |          | nd       |          |          |                |
| Hexachloro-1,3-butadiene                       | 1.0        | nd        |          | nd       |          |          |                |
| 1,2,3-Trichlorobenzene                         | 1.0        | nd        |          | nd.      |          | ·        |                |
| Cumanala rapouries                             |            |           | •        |          |          |          |                |
| Surrogate recoveries<br>Obromofluoromethane    |            | 92%       | 90%      | 95%      | 92%      | 94%      |                |
| Toluene-d8                                     |            | 97%       | 99%      | 96%      | 101%     | 98%      |                |
| 1-Bromofluorobenzene                           |            | 102%      | 104%     | 102%     | 117%     | 105%     |                |

Data Qualifiers and Analytical Comments nd-not detected at listed reporting limits Acceptable Recovery limits: 85% TO 135% Acceptable RPD limit: 35%

WA Dept. of Fish & Wildlife TD2 REHAB PROJECT

Fluorene

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

**Analytical Results** MTH BLK LCS Pond 8 MS MSD RPD 8270, µg/L Matrix Water Water Water Water Water Water 10/13/08 10/13/08 10/13/08 10/13/08 10/13/08 Date extracted Reporting 10/13/08 10/13/08 10/13/08 10/13/08 10/13/08 Date analyzed Limits Pyridine 2.0 nd nd 2.0 nd Aniline nd Phenol 2.0 nd nd 81% 85% 5% 2-Chlorophenol 2.0 nd nd 106% 110% 4% Bis (2-chloroethyl) ether 2.0 nd nd 1,3-Dichlorobenzene 2.0 nd nd 124% 102% 2% 1,4-Dichlorobenzene 2.0 nd nd 100% 1,2-Dichlorobenzene 2.0 nd nd N-methylpyrrolidone 2.0 nd nd Benzyl alcohol 2.0 nd nd 2.0 nd 2-Methylphenol (o-cresol) nd Bis (2-chloroisopropyl) ether 10.0 nd nd 3,4-Methylphenol (m,p-cresc 2.0 nd nd 2.0 Hexacholorethane nd nd 108% 109% 1% N-Nitroso-di-n-propylamine 2.0 nd nd 2.0 nd Nitrobenzene nd nd Isophorone 2.0 nd 10.0 nd 2-Nitrophenol nd 4-Nitrophenol 10.0 nd nd 2% 2,4-Dimethylphenol 2.0 nd nd 82% 84% 2.0 Bis (2-chloroethoxy) methannd nd 2.4-Dichlorophenol 10.0 nd nd 124% 120% 3% 1,2,4-Trichlorobenzene 2.0 nd nd 2.0 nd Naphthalene nd 4-Chloroaniline 10.0 nd nd 126% Hexachiorobutadiene 2.0 nd nd 66% 66% 0% 4-Chloro-3-methylphenol 10.0 nd nd 2-Methylnapthalene 2.0 nd nd 1-Methylnapthalene 2.0 nd nd 2.0 nd Hexachlorocyclopentadiene nd 2,4,6-Trichlorophenol 10.0 nd nd 2,4,5-Trichlorophenol 10.0 nd nd 2-Chloronaphthalene 2.0 nd nd 2-Nitroaniline 10.0 nd nd 1,4-Dinitrobenzene 10.0 nd nd 2.0 nd nd Dimethylphthalate Acenaphthylene 0.2 nd nd 1,3-Dinotrobenzene 10.0 nd nd nd 2.0 nd 2,6-Dinitrotoluene 1,2-Dinitrobenzene 2.0 nd nd 131% 115% 117% 2% Acenaphthene 0.2 nd nd 3-Nitroaniline 10.0 nd nd Dibenzofuran 2.0 nd nd 4% 2,4-Dinitrotoluene 2.0 nd nd 94% 98% 2.0 2,3,4,6-Tetrachiorophenol nd nd 2,3,5,6-Tetrachlorophenol 2.0 nd nd 2,4-Dinitrophenol 10.0 nd nd

0.2

nd

nd

WA Dept. of Fish & Wildlife TD2 REHAB PROJECT

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

| Ar | าลโบ | fica | LR | ellue |
|----|------|------|----|-------|

| 8270, µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | NTH BLK     | LCS      | Pond 8   | MS         | MSD      | RPD |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------|----------|------------|----------|-----|
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water     | Water       | Water    | Water    | Water      | Water    |     |
| Date extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reporting | 10/13/08    | 10/13/08 | 10/13/08 | 10/13/08   | 10/13/08 |     |
| Date analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits    | 10/13/08    | 10/13/08 | 10/13/08 | 10/13/08   | 10/13/08 |     |
| 4-Chlorophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd          |          | nd       |            | . ,      |     |
| Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0       | nd          |          | nd       | •          |          |     |
| 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0      | nd          |          | nd       |            |          |     |
| 4,6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0      | nd          |          | nd       |            |          |     |
| N-nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0       | nd          | 83%      | nd       |            |          |     |
| Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0       | nd          |          | nd       |            |          |     |
| 4-Bromophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0       | nd          |          | nd       |            |          |     |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0       | nd          |          | nd       |            |          |     |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0      | nd          |          | nd       |            |          |     |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2       | nd          |          | nd       |            |          |     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2       | nd          |          | nd       |            |          |     |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd          |          | nd       |            |          |     |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0       | ņd          |          | nd       |            |          |     |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2       | nd          | 126%     | nd       |            |          |     |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,2       | nd          |          | nd       | 78%        | 79%      | 1%  |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0       | nd          |          | nd       |            |          |     |
| Bis(2-ethylhexyl) adipate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0       | nd          |          | nd       |            |          |     |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2       | nd          |          | nd       | •          |          |     |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2       | nd          |          | nd       | •          |          |     |
| Bis (2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0       | nd -        |          | nd       |            |          |     |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0       | nd          | 96%      | nd       |            |          |     |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2       | nd          |          | nd ,     |            |          |     |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2       | nd          |          | nd       |            |          |     |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2       | nd          | 80%      | nd       |            |          |     |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2       | nd -        |          | nd       | . •        |          |     |
| Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2       | nd          |          | nd       |            |          | •   |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2       | nd          |          | nd       |            |          |     |
| On the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |           |             |          | •        |            |          |     |
| Surrogate recoveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 80%         | 115%     | 129%     | 84%        | 83%      |     |
| 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •         | 96%         | 105%     | 114%     | 88%        | 86%      | •   |
| Phenol-d6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 96%<br>118% | 124%     | 109%     | 86%        | 83%      |     |
| Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 91%         | 134%     | 115%     | 89%        | 87%      |     |
| 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 91%<br>69%  | 91%      | 64%      | 50%        | 52%      |     |
| 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 79%         | 130%     | 102%     | 50%<br>75% | 73%      |     |
| 4-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 7970        | 130%     | 1UZ70    | 1074       | 1370     |     |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

# CHAIN-OF-CUSTODY RECORD

| _            | sandali jiyayan da                 |                    | 10/7/08               | anshiath of to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the  |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | 1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                             |                            |                              | رة ا                | j (                         | 48 HR 6 DAY                          |
|--------------|------------------------------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---|----------|--------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|----------------------------|------------------------------|---------------------|-----------------------------|--------------------------------------|
| OF           | an promote the second              |                    | DATE OF<br>COLLECTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ES.                         | )<br>C                     | )<br>.e.                     | かるです。               |                             | - 1                                  |
| PAGE         | Rahah                              | S prod             | Longs /               | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |      |           |      |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | LABORATORY NOT              | 1-827-6                    | ノイル                          |                     |                             | Turn Around Time: 24 HR              |
| .            | (J                                 | 2                  | إلى.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | _                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 4                           | _                          | $\dashv$                     |                     | 4                           | _                                    |
| Co           | PROJECT NAME: TD2                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      | -         | -    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | +                                     | +                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                             |                            | <b>\$</b>                    |                     |                             |                                      |
| 80           | ij                                 | 20                 | C4                    | 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 5                           | INERS                      | S YANG                       |                     | 8                           |                                      |
| DATE: 10 / ₺ | M                                  | LOCATION: TO 2     | COLLECTOR: Rect       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *-        | 3       |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | -                                     | +                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        | SAMPLE RECEIPT              | TOTAL NUMBER OF CONTAINERS | CHAIN OF CUSTODY SEALS YANNA | ş                   | RECEIVED GOOD COND /COLD    |                                      |
|              |                                    | ATIO               | LEICI<br>LEICI        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | PLE                         | R OF                       | 700                          | SEALS INTACT? YAVRA | သဝဝ                         |                                      |
| DATE         | PRO                                | LOC                | CO                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |      |           |      | The second   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | _                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 88                          | CMBE                       | F CS                         | MIACI               | 90                          |                                      |
| 1            | 1                                  | ,                  | 1                     | 6 8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\vdash$ |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | 1                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                             | TAL                        | o<br>₹                       | ALS                 | CEN                         | NOTES:                               |
|              |                                    | 57                 |                       | 1 / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J 8      |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                             | DE SO                      |                              | ଊ                   | <u>~]</u>                   | Ť                                    |
| Ç#1          | ~                                  | 75-1-525           |                       | 1 /2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | - | -        |        |    | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 1                                                                                                        | -                                     | $\dashv$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | DATE/TIME                   | ~ 35-                      | DATEITME                     |                     |                             |                                      |
|              | 52886                              | - 1-3              |                       | 1 \ 2 \ \ \ 2 \ \ \ 2 \ \ \ 2 \ \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ 2 | <b></b>  |      | . 5 * 100 |      | i<br>Parantu | Sec. of<br>Parties<br>Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                                                                                            |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | M                           | 2                          | DAT                          |                     |                             |                                      |
|              | 5                                  | , VI               | K.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 11 1111 |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        | 9                           | Shart S                    | 9                            |                     |                             |                                      |
|              | 5                                  | 1                  | AAG                   | 1 / 1814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -       |   | _        |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | $\dashv$                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dashv$ | Buahr                       | S                          | utent                        |                     |                             | () Pickup                            |
|              |                                    | 509                | MAR                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 8 (S                        | 160                        | BY (S                        |                     | SM                          | 0                                    |
|              | 75                                 | FX                 | PROJECT MANAGER:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      | )<br>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | - |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | $\dashv$                                    | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | RECEIVED BY (Signature)     | W                          | RECEIVED BY (Signature)      |                     | CTO                         | Retur                                |
|              | 7                                  |                    | ROJ                   | Container Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | RECE                        | 1                          | REC                          |                     | STRU                        | 0                                    |
|              | 3                                  |                    | <b>6</b> .            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |           |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          | 1<br>2 |    | is i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alleger (                                                                                                      |                                       | 4                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        |                             | £                          |                              |                     | AL IN                       | Dee O                                |
|              | ź                                  |                    |                       | Sample<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0        | į    | -         |      | ¥            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **        |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | DATE/TIME                   | 12 pm                      | DATE/TIME                    |                     | SAMPLE DISPOSAL INSTRUCTION | 🖸 ESN DISPOSAL 🔞 \$2.00 each 🛮 Retum |
|              | あ                                  | 27                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pr f     |      |           |      |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | _       | - |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | $\dashv$                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | DATE                        | 80/8/01                    | DATE                         |                     | LE D                        | 341                                  |
|              | 3                                  | 7/.                |                       | <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2:00     |      |           |      | <b>~</b>     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _         | ļ.,     |   | <u> </u> |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       | _                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                             | 0                          |                              |                     | AMP                         | SPOSI                                |
| ्र           | 4                                  | 154                | #                     | Depth (Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vì       | ,/·* | 1         | سپست | 732          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |   |          |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ture                        |                            | (auni                        | ٠.                  | 0                           | ESN                                  |
| CLIENT: WOFW | ADDRESS: 1550 Alder St NW, Ephanta | PHONE 509-754-4628 | CLIENT PROJECT #:     | Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      |           |      |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.12.11.1 |         |   |          |        |    | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Andrewski (1965) in the state of the state of the state of the state of the state of the state of the state of | e e e e e e e e e e e e e e e e e e e | pagaman, a parahaman<br>Sanahasan Sanahasan | , and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |          | RELINQUISHED BY (Signature) | (-97)                      | RELINQUISHED BY (Signature)  |                     |                             |                                      |
| ರ            | ¥                                  | 古                  | ರ                     | l s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 2    | 6         | 4    | ıc.          | , (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |         | o | 2        | F      | 12 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z                                                                                                              | 15.                                   | 16                                          | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.      | REL                         | 3,/                        | 밑                            |                     | 1                           |                                      |

# POST-REHABILITATION REPORT

Water: Frater Lake

Location: Sec 3, T36N, R42E and Sec 34, T37N, R42E; 4.3 miles southwest of Tiger,

Pend Oreille County, WA.

DATES TREATED: October 8, 2008

**PURPOSE:** Improve trout survival and growth through reduction of undesirable fish populations.

**LISENCED APPLICATOR:** Robert Jateff, Washington Department of Fish and Wildlife (WDFW), District 6 Fisheries Biologist, Pesticide License # 74965. Jon Anderson, WDFW, Native Resident Species Fisheries Manager, Pesticide License # 69176.

# LAKE DESCRIPTION full pool and (at treatment, if different):

Full pool at treatment.

Surface acres: 15.0

Depth: average ~ 8 ft; maximum 15 ft

Volume: 90 acre-feet

Weight of Water: 244,800,000 lbs.

Connectivity: Inlets – Intermittent stream on northwest corner of lake. Outlet – Intermittent connection via unnamed channel to Leo Lake (and other Little Pend

Oreille Chain lakes).

### TREATMENT DESCRIPTION:

**Toxicant used: Rotenone -** Cube powdered Fish Toxicant EPA Reg # 6458-6; Liquid CFT Legumine EPA Reg # 75338-2

### Actual Rotenone used

|            | Powder      | Liquid    |               |
|------------|-------------|-----------|---------------|
| Date       | lbs @ conc. | gals @ 5% | ppm (product) |
| 10/08/2008 | 715 @ 7.0%  | 5 (CFT)   | 4.0           |

Equivalent 1,001

1,001 @ 5.0%

All powder was slurried with lake water, and liquid was mixed with lake water and sprayed in shallow waters.

The lake was treated at a rotenone concentration of 4 ppm product (0.05 ppm actual rotenone).

Detoxification Procedures: treated waters naturally detoxified. No detoxification was necessary, as there was no surface water connection to the outlet stream.

### SPECIES OF FISH ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

### Species, size; estimated abundance

Pumpkinseed sunfish 1-5"; thousands (maximum estimate = 7,000) Tench 10-14"; hundreds (maximum estimate = 800)

Cutthroat trout 12-13"; tens (1 observed, maximum estimate = 10)

### PHYSICAL CHARACTERISTICS OF THE LAKE DURING TREATMENT:

<u>Pre-treatment water quality parameters – October 8, 2008.</u>

| Depth<br>(m) | Water temp<br>(°C) | D.O.<br>(mg/L) | Нq   | Conductivity (µS/cm) | Turbidity<br>(NTU) |
|--------------|--------------------|----------------|------|----------------------|--------------------|
| Surface      | 10.49              | 9.35           | 7.74 | 39.9                 | 0.4                |
| 1            | 10.51              | 9.25           | 7.57 | 39.7                 | 0.4                |
| . 2          | 10.54              | 9.23           | 7.56 | 39.7                 | 0.5                |
| 3            | 10.23              | 9.31           | 7.60 | 39.7                 | 0.4                |
| 4            | 9.96               | 9.41           | 7.53 | 39.8                 | 0.5                |

**PRE- AND POST-TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009):

*Impact to non-targeted organisms* – Zooplankton were sampled at Frater Lake for diversity and abundance just prior to treatment, and will be sampled again at six months and 12 months post-treatment. Results will be available by separate report.

Liquid rotenone formulation longevity – The shallow, shoreline areas of Frater Lake were treated with CFT. Water samples were taken in an area of the lake where the heaviest concentrations of liquid rotenone were applied (bay on south end of the lake) 24 hours and eight weeks post-treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Samples were sent to an accredited lab for analyses per EPA methods. Samples were analyzed for 63 volatile organic compounds and 75 semi-volatile organic compounds, and detection limits were 0.2-10.0 ug/l, variously. In the 24-hour sample and the 8-week sample, the amounts of all 138 compounds potentially present in liquid rotenone formulations were below detection limits.

*Period of Toxicity* – Persistent rotenone toxicity will be determined by bioassay. Live trout will be held in a modified minnow trap (1 gal volume with free flow-through) in the lake and survival monitored. Trout exhibit signs of stress and lose equilibrium after three hours at rotenone concentrations of 0.05 ppm product (0.0025 ppm actual rotenone) at water temperatures of 47° F, and response is fairly uniform among individuals in similar circumstances. Rotenone is considered below detection limits when trout remain alive for at least 48 hours. Individual mortalities within a group of trout frequently occur due to mechanical damage when handled or transported/confined in relatively small containers.

Bioassay was not completed before ice-up. However, following ice-out in the spring, bioassay will be completed to ensure detoxification.

# GENERAL DESCRIPTION OF TREATMENT PROJECT AND OTHER COMMENTS:

Treatment of Frater Lake was conducted on October 8, 2008. Conditions were generally favorable. Weather was clear and sunny, and the air temperature was 50°F. Rotenone was loaded and delivered the morning of the treatment. A crew of 5 WDFW employees was present. The treatment was staged from a point on the south shoreline of the lake commonly used for walk-in access by anglers. One pumper-boat with a crew of two employees was used to slurry powdered rotenone with lake water. Two employees applied liquid rotenone to shoreline areas using a canoe rigged with a spray tank. One employee managed shoreline operations. Application of powdered rotenone began at 0900 and was completed by noon. Liquid rotenone was applied in the shallows of the lake beginning at 1000 and completed by noon.

Rehabilitation of Frater Lake was considered successful. Dying pumpkinseed sunfish and tench were observed within three hours of beginning treatment. One dead westslope cutthroat trout was also observed. On the following day, large numbers of dead pumpkinseed sunfish and tench were observed throughout the lake, and no live fish were observed.

### **COST:**

Treatment of Frater Lake required about 4 man-days (man-day = 8 hrs) of labor from pretreatment preparation (signing, sampling, rotenone and equipment transport) through treatment, clean up, and travel. Total cost of treatment (rotenone, labor @ \$268.00/man-day, travel, expendable equipment) was approximately \$3,300.00, including about \$1,072.00 for labor during the treatment and \$2,031.65 for rotenone (1,001 lbs powder @ \$1.65/lb @ 5.0%, delivered; 5 gal liquid @ \$76.00/gal). Estimated time for pre-rehabilitation proposals, general public outreach, post-rehabilitation sampling and reports added 3 days.

| •   |   |          |     |
|-----|---|----------|-----|
|     |   |          |     |
|     |   |          |     |
|     |   |          | . • |
|     |   |          |     |
|     |   |          |     |
|     |   | · .      |     |
|     |   |          |     |
|     | • |          |     |
| •   |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   | <b>V</b> | •   |
|     |   |          | •   |
|     |   |          |     |
|     |   |          | •   |
|     | • |          | •   |
|     |   | $a^{*}$  |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   | •        |     |
|     | · |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   | ,        |     |
|     |   |          |     |
|     |   |          |     |
|     |   | · ·      |     |
|     |   | •        |     |
|     |   | •        | •   |
|     |   | •        |     |
|     | • |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
| • . |   | ·        |     |
|     | • |          |     |
|     |   |          |     |
|     | • | •        |     |
|     | • |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |
|     |   |          |     |

Washington Dept. of Fish & Wildlife FRATER LAKE REHAB PROJECT Pend Oreille Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (3 lab@esnnw.com (360) 459-3432 Fax

| 8260, µg/L (Water)         | *         | MTHBLK   | LCS      | Frater Lake | MS                      | MSD      | RPL  |
|----------------------------|-----------|----------|----------|-------------|-------------------------|----------|------|
|                            | Reporting |          |          |             |                         |          |      |
| Date analyzed              | Limits    | 10/15/08 | 10/15/08 | 10/15/08    | 10/15/08                | 10/15/08 |      |
| Dichlorodifluoromethane    | 1.0       | nd       |          | nd          |                         |          |      |
| Chloromethane              | 1,0       | nd       |          | nd          |                         |          |      |
| Vinyl chloride             | 0.2       | nd       |          | nd          |                         |          |      |
| Bromomethane               | 1.0       | nd       |          | nd          |                         | •        |      |
|                            | 1.0       | nd       |          | nd          |                         |          |      |
| Chloroethane               | 1.0       | nd       |          | nd          |                         |          |      |
| Trichlorofluoromethane     | 1.0       | nd       | 78%      | nd          | 89%                     | 78%      | 139  |
| 1,1-Dichloroethene         |           |          | 1070     | nd ·        | 0570                    | 1070     | 10.  |
| Methylene chloride         | 1.0       | nd       |          |             |                         |          |      |
| trans-1,2-Dichloroethene   | 1.0       | nd       |          | nd          |                         |          |      |
| 1,1-Dichloroethane         | 1.0       | nd       |          | bn ·        |                         |          |      |
| cis-1,2-Dichloroethene     | 1.0       | nd       |          | nd          |                         |          |      |
| 2,2-Dichloropropane        | 1.0       | nd       |          | nd          |                         |          |      |
| Chloroform                 | 1.0       | nd       |          | nd          |                         |          |      |
| Bromochloromethane         | 1.0       | nd       |          | nd          | 4                       | *        |      |
| 1,1,1-Trichloroethane      | 1.0       | nd       |          | nd          |                         |          |      |
| 1,2-Dichloroethane         | 1.0       | nd       |          | nd          |                         |          |      |
| 1,1-Dichloropropane        | 1.0       | nd       |          | nd          |                         |          |      |
| Carbon tetrachloride       | 1.0       | nd       |          | nd          |                         |          |      |
| Benzene                    | 1.0       | nd       | 93%      | nd          | 100%                    | 90%      | 119  |
| Trichloroethene            | 1.0       | nd       | 92%      | nd          | 104%                    | 91%      | 139  |
| 1.2-Dichloropropane        | 1.0       | , nd     | •        | nd          |                         |          |      |
| Dibromomethane             | 1.0       | nd       |          | nd          |                         |          |      |
| Bromodichloromethane       | 1.0       | nd       |          | nd          |                         |          |      |
| cis-1,3-Dichloropropene    | 1.0       | nd       |          | nd          |                         |          |      |
| Toluene                    | 1.0       | nd       | 86%      | nd          | 102%                    | 83%      | 219  |
|                            | 1.0       | nd       | 00,0     | nd          | .02,0                   | 5574     |      |
| irans-1,3-Dichloropropene  | 1,0       | nd       |          | nd          |                         |          |      |
| 1,1,2-Trichloroethane      | 1.0       | nd nd    |          | nd          |                         |          |      |
| 1,3-Dichloropropane        |           |          |          |             |                         |          |      |
| Dibromochloromethane       | 1.0       | nd       |          | nd          |                         |          |      |
| Tetrachloroethene          | 1.0       | nd       |          | nd          |                         |          |      |
| 1,2-Dibromoethane (EDB)    | 1.0       | nd       |          | nd          | 40004                   | 0004     | 4770 |
| Chlorobenzene .            | 1.0       | nd       | 96%      | nd          | 106%                    | 89%      | 179  |
| 1,1,1,2-Tetrachloroethane  | 1.0       | nd       |          | nd          |                         |          |      |
| Ethylbenzene               | 1.0       | nd       |          | nd          |                         |          |      |
| Kylenes                    | 1.0       | nd       |          | nd          |                         |          |      |
| Styrene                    | 1.0       | nd       |          | nd          |                         |          |      |
| 3romoform                  | 1.0       | nd       |          | nd          |                         |          |      |
| 1,1,2,2-Tetrachloroethane  | 1.0       | nd       |          | nd          |                         |          |      |
| sopropylbenzene            | 1.0       | nd       |          | nd          |                         |          |      |
| 1,2,3-Trichloropropane     | 1.0       | nd       |          | nd          |                         |          |      |
| Bromobenzene               | 1.0       | nd       |          | nd          |                         |          |      |
| n-Propylbenzene            | 1.0       | nd       |          | nd          |                         |          |      |
| 2-Chlorotoluene            | 1.0       | nd       |          | nd          |                         |          |      |
| I-Chlorotoluene            | 1.0       | nd       |          | nd          |                         |          |      |
|                            | 1.0       | nd       |          | nd          |                         |          |      |
| ,3,5-Trimethylbenzene      | 1.0       | nd       |          | nd          |                         |          |      |
| ert-Butylbenzene           |           | nd       |          | nd          |                         |          |      |
| ,2,4-Trimethylbenzene      | 1.0       |          |          |             |                         |          |      |
| sec-Butylbenzene           | 1.0       | nd       |          | nd          |                         |          |      |
| ,3-Dichlorobenzene         | 1.0       | nd       |          | nd          |                         |          |      |
| ,4-Dichlorobenzene         | 1.0       | nd       |          | nd          |                         |          |      |
| sopropyltoluene            | 1.0       | nd       |          | nd          |                         |          |      |
| ,2-Dichlorobenzene         | 1,0       | nd       |          | nd          |                         |          |      |
| -Butylbenzene              | 1.0       | nd       |          | nd          |                         |          |      |
| ,2-Dibromo-3-Chloropropane | 1,0       | nd       |          | nd          |                         |          |      |
| ,2,4-Trichlorobenzene      | 1.0       | nd       |          | nd          |                         |          |      |
| laphthalene                | 1,0       | nd       |          | nđ          |                         |          |      |
| fexachloro-1,3-butadiene   | 1.0       | nd       |          | nd          |                         |          |      |
| 1,2,3-Trichlorobenzene     | 1.0       | nd       | 3, 1111. | nd          | Secretary and committee |          |      |
| Surrogale recoveries       |           |          |          |             |                         |          |      |
| Dibromofluoromethane       |           | 92%      | 90%      | 95%         | 92%                     | 94%      |      |
| oluene-d8                  |           | 97%      | 99%      | 100%        | 101%                    | 98%      |      |
| -Bromofluorobenzene        |           | 102%     | 104%     | 106%        | 117%                    | 105%     |      |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits?

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

Washington Dept. of Fish & Wildlife FRATER LAKE REHAB PROJECT Pend Oreille Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| 8270, µg/L                              |            | MTH BLK  | LCS      | Frater Lake | MS       | MSD      | RPD         |
|-----------------------------------------|------------|----------|----------|-------------|----------|----------|-------------|
| Matrix                                  | Water      | Water    | Water    | Water       | Water    | Water    | <del></del> |
| Date extracted                          | Reporting  | 10/13/08 | 10/13/08 | 10/13/08    | 10/13/08 | 10/13/08 |             |
| Date analyzed                           | Limits     | 10/13/08 | 10/13/08 | 10/13/08    | 10/13/08 | 10/13/08 |             |
| Pyridine                                | 2.0        | nd       |          | nd          |          |          |             |
| Aniline                                 | 2.0        | nd       |          | nd          |          |          |             |
| Phenol                                  | 2.0        | nd       |          | nd          | 81%      | 85%      | 5%          |
| 2-Chlorophenol                          | 2.0        | nd       |          | nd          | 106%     | 110%     | 4%          |
| Bis (2-chloroethyl) ether               | 2.0        | nd       |          | nd          | ,        |          |             |
| 1,3-Dichlorobenzene                     | 2.0        | nd       |          | nd          |          |          |             |
| 1,4-Dichlorobenzene                     | 2.0        | nd       | 124%     | nd          | 102%     | 100%     | 2%          |
| 1.2-Dichlorobenzene                     | 2.0        | nd       |          | nd          |          |          |             |
| N-methylpyrrolidone                     | 2.0        | nd       | 4        | nd          |          |          |             |
| Benzyl alcohol                          | 2.0        | nd       |          | nd          |          |          | •           |
| 2-Methylphenol (o-cresol)               | 2.0        | nd       |          | nd          |          |          |             |
| Bis (2-chloroisopropyl) ether           | 10.0       | nd       |          | nd          |          |          |             |
|                                         | 2.0        | nd       |          | nd          |          |          |             |
| 3,4-Methylphenol (m,p-cresol)           | 2.0        | nd       |          | nd          |          |          |             |
| Hexacholorethane                        | 2.0        | nd       |          | nd          | 108%     | 109%     | 1%          |
| N-Nitroso-di-n-propylamine              | 2.0<br>2.0 |          | •        | nd          | 10070    | 10970    | 1.70        |
| Nitrobenzene                            |            | nd       |          |             |          |          |             |
| Isophorone                              | 2.0        | nd       | •        | nd          |          |          |             |
| 2-Nitrophenol                           | 10.0       | nd       |          | nd          |          |          |             |
| 4-Nitrophenol                           | 10.0       | nd       |          | nd          | 2004     | . 0.404  |             |
| 2,4-Dimethylphenol                      | 2.0        | nd       |          | nd          | 82%      | 84%.     | 2%          |
| Bis (2-chloroethoxy) methane            | 2.0        | nd       | •        | nd          |          |          |             |
| 2,4-Dichlorophenol                      | 10.0       | nd       |          | nd          |          |          |             |
| 1,2,4-Trichlorobenzene                  | 2.0        | nd       |          | nd          | 124%     | 120%     | 3%          |
| Naphthalene                             | 2.0        | nd       |          | nd          |          |          |             |
| 4-Chloroaniline                         | 10.0       | nd       |          | nd          |          |          |             |
| Hexachlorobutadiene                     | 2.0        | nd       | 126%     | nd          |          |          |             |
| 4-Chloro-3-methylphenol                 | 10.0       | . nd     |          | nd          | 66%      | 66%      | 0%          |
| 2-Methylnapthalene                      | 2.0        | nd       |          | nd          |          |          |             |
| 1-Methylnapthalene                      | 2.0        | nd       |          | nd          |          |          |             |
| Hexachlorocyclopentadiene               | 2.0        | · nd     |          | nd          |          |          |             |
| 2,4,6-Trichlorophenol                   | 10.0       | nd       |          | nd          |          |          |             |
| 2,4,5-Trichlorophenol                   | 10.0       | nd       |          | nd          | •        |          |             |
| 2-Chloronaphthalene                     | 2.0        | nd       |          | nd          |          | v .      |             |
| 2-Nitroaniline                          | 10.0       | nd       |          | nd          |          |          |             |
| 1,4-Dinitrobenzene                      | 10.0       | nd       |          | nd ·        |          |          |             |
| Dimethylphthalate                       | 2.0        | nd       |          | nd          |          |          |             |
| Acenaphthylene                          | 0.2        | nd       |          | nd          |          |          |             |
| 1,3-Dinotrobenzene                      | 10.0       | nd       |          | nd          |          | •        |             |
| 2,6-Dinitrotoluene                      | 2.0        | nd ·     |          | nd          |          |          |             |
| 1,2-Dinitrobenzene                      | 2.0        | nd       |          | nd          |          |          |             |
| Acenaphthene                            | 0.2        | nd       | 131%     | nd          | 115%     | 117%     | 2%          |
| 3-Nitroaniline                          | 10.0       | nd       |          | nd          |          |          |             |
| Dibenzofuran                            | 2.0        | nd       |          | nd          |          |          | •           |
| 2,4-Dinitrotoluene                      | 2.0        | nd       |          | nd          | 94%      | 98%      | 4%          |
| 2,3,4,6-Tetrachlorophenol               | 2.0        | nd       |          | nd          | 0,       | ••••     | ,.          |
| 2,3,5,6-Tetrachlorophenol               | 2.0        | nd       |          | nd          | •        |          |             |
| _,,,,,,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ۷.0        | r i u    |          | iiu ·       |          |          |             |
| 2,4-Dinitrophenol                       | 10.0       | nd       |          | nd          |          |          |             |

Washington Dept. of Fish & Wildlife FRATER LAKE REHAB PROJECT Pend Oreille Co., Washington

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 lab@esnnw.com (360) 459-3432 Fax

| un e trestan de              |           |          |                                        | lab@esnnw.            | com      |          |                                         |
|------------------------------|-----------|----------|----------------------------------------|-----------------------|----------|----------|-----------------------------------------|
| Analytical Results           |           | MTH BLK  | LCS                                    | Frater Lake           | MS       | MSD      | RPD                                     |
| 8270, µg/L<br>Matrix         | Water     | Water    | Water                                  | Water                 | Water    | Water    | 1(1,12                                  |
| Date extracted               | Reporting | 10/13/08 | 10/13/08                               | 10/13/08              | 10/13/08 | 10/13/08 |                                         |
| Date analyzed                | Limits    | 10/13/08 | 10/13/08                               | 10/13/08              | 10/13/08 | 10/13/08 |                                         |
| Date analyzed                |           |          | 3,47,3,47,42                           |                       |          |          |                                         |
| 4-Chlorophenylphenylether    | 2,0       | nd       |                                        | nd                    |          | •        |                                         |
| Diethylphthalate             | 2.0       | nd       |                                        | nd                    |          |          |                                         |
| 4-Nitroaniline               | 10.0      | nd       |                                        | nd                    |          |          |                                         |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |                                        | nd                    |          | •        |                                         |
| N-nitrosodiphenylamine       | 2.0       | nd       | 83%                                    | nd                    |          |          |                                         |
| Azobenzene                   | - 2.0     | nd       |                                        | nd                    |          |          |                                         |
| 4-Bromophenylphenylether     | 2.0       | nd       |                                        | nd                    | **       | •        |                                         |
| Hexachlorobenzene            | 2.0       | nd       |                                        | nd                    | ·        |          |                                         |
| Pentachlorophenol            | 10.0      | nd       |                                        | nd                    |          |          |                                         |
| Phenanthrene                 | 0.2       | nd       | _                                      | nd                    |          |          |                                         |
| Anthracene                   | 0.2       | nd       | -                                      | nd                    |          |          |                                         |
| Carbazole                    | 2.0       | nd       |                                        | nd                    | •        |          | •                                       |
| Di-n-butylphthalate          | 2.0       | nd       |                                        | nd                    |          |          |                                         |
| Fluoranthene                 | 0.2       | nd       | 126%                                   | nd                    |          |          |                                         |
| Pyrene                       | 0.2       | nd       |                                        | nd                    | 78%      | 79%      | 1%                                      |
| Butylbenzylphthalate         | 2.0       | nd       |                                        | nd                    |          |          |                                         |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |                                        | nd                    |          |          |                                         |
| Benzo(a)anthracene           | 0.2       | nd       |                                        | nd                    |          | ,        |                                         |
| Chrysene                     | 0.2       | nd       |                                        | nd                    |          |          |                                         |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |                                        | nd                    |          |          |                                         |
| Di-n-octyl phthalate         | 2.0       | nd       | 96%                                    | nd                    |          | · ·      |                                         |
| Benzo(b)fluoranthene         | 0.2       | nd       |                                        | nd                    |          |          |                                         |
| Benzo(k)fluoranthene         | 0.2       | nd       | ٠.,                                    | nd                    |          |          |                                         |
| Benzo(a)pyrene               | 0.2       | nd       | 80%                                    | nd                    |          |          |                                         |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |                                        | nd                    |          | •        |                                         |
| Benzo(ghi)perylene           | 0.2       | nd       | *                                      | nd                    |          |          |                                         |
| Indeno(1,2,3-cd)pyrene       | 0.2       | · nd     |                                        | nd                    |          |          |                                         |
| macho(1,2,0 daypyrona        |           |          | ······································ |                       |          |          | * * * * * * * * * * * * * * * * * * * * |
| Surrogate recoveries         | a ee      |          |                                        | T. M. manus musual De |          |          | •                                       |
| 2-Fluorophenol               |           | 80%      | 115%                                   | 122%                  | 84%      | 83%      |                                         |
| Phenol-d6                    | •         | 96%      | 105%                                   | 129%                  | 88%      | - 86%    |                                         |
| Nitrobenzene-d5              |           | 118%     | 124%                                   | 99%                   | 86%      | 83%      |                                         |
| 2-Fluorobiphenyl             |           | 91%      | 134%                                   | 103%                  | 89%      | 87%      |                                         |
| 2,4,6-Tribromophenol         |           | 69%      | 91%                                    | 62%                   | 50%      | 52%      |                                         |
| 4-Terphenyl-d14              |           | 79%      | 130%                                   | 84%                   | 75%      | 73%      |                                         |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

ESN Environmental

Olympia: (360) 459-4670 Bellevue: (360) 957-9872

CHAIN-OF-CUSTODY RECORD

| CLIENT: WDFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE: Actor/2007                          |                                          | PAGE OF                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADDRESS: 2315 N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2315 N. Dswey A.                      | . 4            | Spekan Valley, WH 9926                           | rest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT NAME: Frite Late Relat            | Trib 6                                   | to feloh                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHONE (504) 872-1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | FA)            | FAX: (509) 724-244/                              | 16/02-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOCATION: Fronter Longe, Pend Over the Co | londe Per                                | Jorille G. WA           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIENT PROJECT #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1                                   | PROJEC         | PROJECT MANAGER: BULLY                           | Ru Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COLLECTOR: Bill Bold                      | 11 Beter                                 | -                       | DATE OF 10/69/6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                | \$0.00 E. S. S. S. S. S. S. S. S. S. S. S. S. S. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         | BJOUIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Number Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample<br>Time Type                   | Container Ty   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | NOTES                   | Total Nuclear No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54 Ect 13:30                          |                | X                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                          | Voc + Sani va           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | Townshes and            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | Mathul                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | PSI-rilidan             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Sheet Street   |                                                  | Army District Army Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Community of the Comm |                                           |                                          | , ,                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                |                                                  | 5 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE/TIME                             |                | RECEIVED BY (Signature)                          | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE RECEIPT                            |                                          | LABORATORY NOTES:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W. W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15/1/10/18/01                         |                | Migun 10/10/08                                   | 0 10 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL NUMBER OF CONTAINERS                | SS                                       |                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RELINOUISHED BY (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE/TIME                             | RECEIVÊD E     | ED BY (Sygnature)                                | DARETIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAIN OF CUSTODY SEALS YAWAA              | <i>I</i> MA                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ¥ - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |                | ,                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEALS INTACT? YAVINA                      |                                          |                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE DISPOSAL INSTRUCTIO            | SAL INSTRUC    | TIONS                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECEIVED GOOD COND, COLD                  |                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D ESN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 🛭 ESN DISPOSAL 🔞 \$2.00 each 🗖 Return | .00 each [] Re | tum D Pickup                                     | American surprise property of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the surprise specific section of the su | NOTES:                                    | <del></del>                              | Turn Around Time: 24 HR | 48 HR 5 DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                | l                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | تا الله الله الله الله الله الله الله ال | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

WA Dept. of Fish & Wildlift FRATER LAKE REHAB PROJECT Pend Oreille Co., Washingtor

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| 8260, μg/L (Water)          | Reporting | MTH BLK  | LCS    | Frater Lake | MS    | MS   |
|-----------------------------|-----------|----------|--------|-------------|-------|------|
| Date analyzed               | Limits    |          |        |             |       | •    |
| Dichlorodifluoromethane     | 1.0       | nd       |        | nd          |       |      |
| Chloromethane               | 1.0       | nd       |        | nd          |       |      |
| Vinyl chloride              | 0.2       | nd       |        | nd          |       |      |
| Bromomethane                | 1.0       | nd       |        | nd          |       |      |
| Chloroethane                | 1.0       | nd       |        | nd          |       |      |
| Trichlorofluoromethane      | 1.0       | nd       |        | nd          |       |      |
| Acetone                     | 10.0      | nd       |        | nd          |       |      |
| 1,1-Dichloroethene          | 1.0       | nd       | ~      | nd          | •     |      |
| Methylene chloride          | · 1.0     | · nd     |        | nd .        |       |      |
| Methyl-t-butyl ether (MTBE) | 1.0       | nd       |        | nd          |       |      |
| trans-1,2-Dichloroethene    | 1.0       | nd       |        | nd          |       |      |
| 1,1-Dichloroethane          | 1.0       | nd       |        | nd          |       |      |
| 2-Butanone (MEK)            | 10.0      | . nd     |        | nd          |       |      |
| cis-1,2-Dichloroethene      | 1.0       | nd       |        | nd          |       |      |
| 2,2-Dichloropropane         | 1.0       | nd       |        | nd          |       |      |
| Chloroform                  | 1.0       | nd       |        | nd          |       |      |
|                             | 1.0       |          |        | nd          |       |      |
| Bromochloromethane          |           | nd       |        |             |       |      |
| 1,1,1-Trichloroethane       | 1.0       | nd       |        | nd          |       |      |
| 1,2-Dichloroethane (EDC)    | 1.0       | nd       | •      | nd          |       |      |
| 1,1-Dichloropropene         | 1.0       | nd       |        | nd          |       |      |
| Carbon tetrachloride        | 1.0       | nd       |        | nd          |       |      |
| Benzene                     | 1.0       | nd       | 101%   | nģ          | 100%  | 100  |
| Trichloroethene (TCE)       | 1.0       | nd       | 93%    | nd          | 93%   | 93   |
| 1,2-Dichloropropane         | 1.0       | nd       |        | nd          |       |      |
| Dibromomethane              | 1.0       | nd       |        | ind         |       |      |
| Bromodichloromethane        | 1.0       | nd       |        | nd          |       |      |
| 4-Methyl-2-pentanone (MIBK) | 1.0       | nd       |        | nd          |       |      |
| cis-1,3-Dichloropropene     | 1.0       | nd       |        | nd          |       |      |
| Toluene                     | 1.0       | nd       | 116%   | ' nd        | 116%  | 116  |
| rans-1,3-Dichloropropene    | 1.0       | nd       |        | nd          |       |      |
| 1,1,2-Trichloroethane       | 1.0       | nd       |        | nd          |       |      |
| 2-Hexanone                  | 1.0       | nd       |        | nd          |       |      |
| 1,3-Dichloropropane         | 1.0       | nd       |        | nd          |       |      |
| Dibromochloromethane        | 1.0       | nd       |        | nd          |       |      |
| Tetrachloroethene (PCE)     | 1.0       | nd       | 78%    | nd          | 130%  | 142  |
| 1,2-Dibromoethane (EDB)     | 1.0       | nd       | ,70%   | nd          | 10070 | (*** |
| Chlorobenzene               | 1.0       | nd       |        | nd          |       |      |
|                             | 1.0       | nd       |        | nd          |       |      |
| 1,1,1,2-Tetrachloroethane   |           |          | 40.40/ |             | 124%  | 123  |
| Ethylbenzene                | 1.0       | nd       | 124%   | nd .        |       |      |
| Kylenes                     | 3.0       | nd       | 123%   | nd          | 125%  | 120  |
| Styrene                     | 1.0       | . nd     |        | nd          |       |      |
| Bromoform                   | 1.0       | nd       |        | nd          |       |      |
| 1,1,2,2-Tetrachloroethane   | 1.0       | nd       |        | nd          |       |      |
| sopropylbenzene             | 1.0       | nd       |        | nd          |       |      |
| 1,2,3-Trichloropropane      | 1.0       | nd       |        | nd          |       |      |
| Bromobenzene                | 1.0       | nd       |        | nd          |       |      |
| n-Propylbenzene             | 1.0       | nd       |        | nd          |       |      |
| 2-Chlorotoluene             | 1.0       | nd       |        | , nd        |       |      |
| f-Chlorotoluene             | 1.0       | nd       |        | nd          |       |      |
| 1,3,5-Trimethylbenzene      | 1.0       | nd       |        | nd ·        |       |      |
| ert-Butylbenzene            | 1.0       | nd       |        | nd          |       |      |
| 1,2,4-Trimethylbenzene      | 1.0       | nd       |        | nd          |       |      |
| sec-Butylbenzene            | . 1.0     | nd       |        | nd          |       |      |
| ,3-Dichlorobenzene          | 1.0       | nd       |        | nd          |       |      |
| ,4-Dichlorobenzene          | 1.0       | nd       |        | nd          |       |      |
| sopropyltoluene             | 1.0       | nd       |        | nd          |       |      |
|                             |           |          |        | nd          |       |      |
| ,2-Dichlorobenzene          | . 1.0     | nd<br>nd |        |             |       |      |
| -Butylbenzene               | 1.0       | nd       |        | nd          |       |      |
| ,2-Dibromo-3-Chloropropane  | 1.0       | nd       |        | nd          |       |      |
| 2,4-Trichlorobenzene        | 1.0       | , nd     |        | nd          |       |      |
| Naphthalene                 | 1.0       | nd       | 85%    | nd          |       |      |
| lexachloro-1,3-butadiene    | 1.0       | nd       |        | nd          |       |      |
| 1,2,3-Trichlorobenzene      | 1.0       | nd -     |        | nd          |       |      |
|                             |           |          |        |             |       |      |
| Surrogate recoveries        |           | 000/     | 050/   | 4400/       | 4040/ |      |
| Dibromofluoromethane        |           | 88%      | 85%    | 110%        | 101%  | 98   |
| Toluene-d8                  |           | 104%     | 107%   | 111%        | 121%  | 118  |
| 1-Bramofluorobenzene        |           | 103%     | 107%   | 111%        | 114%  | 114  |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

| • |
|---|
|   |
|   |
| • |
|   |
|   |
|   |
|   |
| • |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
| • |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
| · |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

### ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81216.2 WDFW

Client:

Client Job Name:

Frater Lake Rehab

Analytical Results

| 8270, μg/L                               |              | MTH BLK  | LCS      | Frater Lake | MS       | MSD      | RPD |
|------------------------------------------|--------------|----------|----------|-------------|----------|----------|-----|
| Matrix                                   | Water        | Water    | Water    | Water       | Water    | Water    |     |
| Date extracted                           | Reporting    | 12/17/08 | 12/17/08 | 12/17/08    | 12/17/08 | 12/17/08 |     |
| Date analýzed                            | Limits       | 12/17/08 | 12/17/08 | 12/17/08    | 12/17/08 | 12/17/08 |     |
| B. statte                                |              | اسمد     |          | nd          |          |          |     |
| Pyridine                                 | 2.0<br>2.0   | nd<br>nd |          | nd          |          |          |     |
| Aniline                                  | 2.0          | nd       |          | nd          | 94%      | 93%      | 1%  |
| Phenol Chlorophonol                      | 2.0          | nd       | •        | nd          | 115%     | 111%     | 4%  |
| 2-Chlorophenol Bis (2-chloroethyl) ether | 2.0          | nd       | •        | nd i        | 11370    | 11170    | 770 |
| •                                        | 2.0          | nd       |          | . nd        |          |          |     |
| 1,3-Dichlorobenzene                      | 2.0          | , nd     | 103%     | nd          | 101%     | 102%     | 1%  |
| 1,4-Dichlorobenzene                      | 2.0          | nd       | 10376    | nd          | 10170    | 10270    | 170 |
| 1,2-Dichlorobenzene                      | 2.0<br>2.0 · | nd       |          | nd          |          |          | •   |
| N-methylpyrrolidone                      | 2.0          | nd       |          |             |          |          |     |
| Benzyl alcohol                           |              |          |          | nd .        | •        | •        |     |
| 2-Methylphenol (o-cresol)                | 2.0          | nd       |          | nd i        |          |          |     |
| Bis (2-chloroisopropyl) ether            | 10.0         | nd       |          | nd<br>nd    |          |          |     |
| 3,4-Methylphenol (m,p-cresol)            | 2.0          | nd       |          | nd          |          |          |     |
| Hexacholorethane                         | 2.0          | nd       |          | nd          | 123%     | 122%     | 1%  |
| N-Nitroso-di-n-propylamine               | 2.0          | nd       |          | nd          | 123%     | 122%     | 170 |
| Nitrobenzene                             | 2.0          | nd       |          | nd<br>d     |          |          |     |
| Isophorone                               | 2.0          | nd       |          | nd<br>t     |          |          |     |
| 2-Nitrophenol                            | 10.0         | nd       |          | nd          |          |          |     |
| 4-Nitrophenol                            | 10.0         | nd       |          | nd          | 40704    | 4070/    | 00/ |
| 2,4-Dimethylphenol                       | 2.0          | nd       |          | nd          | 107%     | 107%     | 0%  |
| Bis (2-chloroethoxy) methane             | 2.0          | nd       |          | nd          |          |          |     |
| 2,4-Dichlorophenol                       | 10.0         | nd       |          | nd          |          |          |     |
| 1,2,4-Trichlorobenzene                   | 2.0          | nd       |          | nd          | 116%     | 118%     | 2%  |
| Naphthalene                              | 2.0          | nd       |          | nd          |          |          |     |
| 4-Chloroaniline                          | 10.0         | . nd     |          | nd          |          |          |     |
| Hexachlorobutadiene.                     | 2.0          | nd       | 123%     | nd          |          |          |     |
| 4-Chloro-3-methylphenol                  | 10.0         | nd       |          | nd          | 81%      | 81%      | 0%  |
| 2-Methylnapthalene                       | 2.0          | nd       | •        | nd          |          |          |     |
| 1-Methylnapthalene                       | 2.0          | · nd     |          | nd          |          |          |     |
| Hexachlorocyclopentadiene                | 2.0          | nd       |          | nd -        |          |          |     |
| 2,4,6-Trichlorophenol                    | 10.0         | nd       |          | nd          |          |          |     |
| 2,4,5-Trichlorophenol                    | 10.0         | nd       |          | nd          |          |          |     |
| 2-Chloronaphthalene                      | 2.0          | nd       |          | nd          |          |          |     |
| 2-Nitroaniline                           | 10.0         | nd       |          | nd          |          |          | * * |
| 1,4-Dinitrobenzene                       | 10.0         | nd       |          | nd          |          |          |     |
| Dimethylphthalate                        | 2.0          | nd       |          | nd          |          |          |     |
| Acenaphthylene                           | 0.2          | nd       |          | , nd        |          |          |     |
| 1,3-Dinotrobenzene                       | 10.0         | · nd     |          | nd          |          |          |     |
| 2,6-Dinitrotoluene                       | 2.0          | nd       |          | nd          |          | •        |     |
| 1,2-Dinitrobenzene                       | 2.0          | nd       |          | nd          |          |          |     |
| Acenaphthene                             | 0.2          | nd       | 131%     | nd          | 98%      | 97%      | 1%  |
| 3-Nitroaniline                           | 10.0         | nd       |          | nd          |          |          |     |
| Dibenzofuran ·                           | 2.0          | nd       |          | nd          |          |          |     |
| 2,4-Dinitrotoluene                       | 2.0          | nd       | •        | nd          | 88%      | 87%      | 1%  |
| 2,3,4,6-Tetrachlorophenol                | 2.0          | nd       |          | nd          |          |          |     |
| 2,3,5,6-Tetrachlorophenol                | 2.0          | nd       |          | nd          |          |          |     |
| 2,4-Dinitrophenol                        | 10.0         | . nd     |          | nd          |          |          |     |
| Fluorene                                 | 0.2          | nd       |          | nd          |          |          |     |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81216.2

Client:

WDFW

Client Job Name:

Frater Lake Rehab

### Analytical Results

| 8270, μg/L                   |           | MTH BLK  | LCS      | Frater Lake | MS       | MSD      | RPD |
|------------------------------|-----------|----------|----------|-------------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water       | Water    | Water    |     |
| Date extracted               | Reporting | 12/17/08 | 12/17/08 | 12/17/08    | 12/17/08 | 12/17/08 |     |
| Date analyzed                | Limits    | 12/17/08 | 12/17/08 | 12/17/08    | 12/17/08 | 12/17/08 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd .        |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd          |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |          | nd          |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | , nd        |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 125%     | nd          |          |          |     |
| Azobenzene                   | 2.0       | nd       |          | nd          |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd          |          |          |     |
| Hexachlorobenzene .          | 2.0       | nd       | •        | nd          |          |          |     |
| Pentachlorophenol            | 10.0      | nd       |          | nd          |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | nd          |          |          |     |
| Anthracene                   | 0.2       | nd       |          | nd          |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd          |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd          |          |          |     |
| Fluoranthene                 | 0.2       | nd       | 127%     | nd          |          | •        |     |
| Pyrene                       | 0.2       | nd       |          | nd          | 89%      | 86%      | 3%  |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd          |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd          |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | . nd        |          |          |     |
| Chrysene                     | 0.2       | nd       |          | nd          |          | •        |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd          |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 86%      | nd          |          |          |     |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd          |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd          | •        |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 82%      | nd          |          |          |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd          |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd          | •        |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd          |          |          |     |
|                              |           |          |          |             |          |          |     |
| Surrogate recoveries         |           |          |          |             |          |          |     |
| 2-Fluorophenol               |           | 92%      | 112%     | 115%        | 89%      | 91%      |     |
| Phenol-d6                    |           | 95%      | 125%     | 90%         | 96%      | 99%      | •." |
| Nitrobenzene-d5              |           | 111%     | 131%     | 87%         | 92%      | 93%      |     |
| 2-Fluorobiphenyl             |           | 86%      | 125%     | 78%         | 81%      | 84%      |     |
| 2,4,6-Tribromophenol         |           | 63%      | 127%     | 69%         | 78%      | 78%      |     |
| 4-Terphenyl-d14              |           | 85%      | 82%      | 82%         | 79%      | 78%      |     |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

# POST-REHABILITATION REPORT

Water: Lake Ellen

Location: Sec 26 and 27, T35N, R36E; approximately 14 miles north of Inchelium,

Ferry County, WA.

**DATES TREATED:** October 7, 2008

PURPOSE: Improve trout survival and growth through reduction of undesirable fish

populations.

**LISENCED APPLICATOR:** Robert Jateff, Washington Department of Fish and Wildlife (WDFW), District 6 Fisheries Biologist, Pesticide License # 74965. Jon Anderson, WDFW, Native Resident Species Fisheries Manager, Pesticide License # 69176.

# LAKE DESCRIPTION full pool and (at treatment, if different):

Full pool at treatment.

Surface acres: 78.0

Depth: average ~ 15 ft; maximum 34 ft

Volume: 1,137 acre-feet

Weight of Water: 2,963,944,598 lbs.

Connectivity: Inlets - Intermittent streams on northeast and northwest corners of

lake. Outlet – Intermittent connection to La Fleur Creek.

### TREATMENT DESCRIPTION:

**Toxicant used: Rotenone -** Cube powdered Fish Toxicant EPA Reg # 6458-6; Liquid CFT Legumine EPA Reg # 75338-2

# Actual Rotenone used

|            | Powder       | Liquid    |               |
|------------|--------------|-----------|---------------|
| Date       | lbs @ conc.  | gals @ 5% | ppm (product) |
| 10/07/2008 | 2,035 @ 7.0% | 10 (CFT)  | 1.0           |

Equivalent 2,849 @ 5.0%

All powder was slurried with lake water, and liquid was mixed with lake water and sprayed in shallow waters.

The lake was treated at a rotenone concentration of 1 ppm product (0.05 ppm actual rotenone).

Detoxification Procedures: treated waters naturally detoxified. No detoxification was necessary, as there was no surface water connection to the outlet stream.

### SPECIES OF FISH ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

### Species, size; estimated abundance

Green sunfish 3-6"; thousands (maximum estimate = 10,000)

Largemouth bass 4-16"; hundreds (maximum estimate = 1000)

Rainbow trout 12-15"; tens (6 observed, maximum estimate = 30)

### PHYSICAL CHARACTERISTICS OF THE LAKE DURING TREATMENT:

Pre-treatment water quality parameters – October 3, 2008.

|     | Depth (m) | Water temp<br>(°C) | D.O.<br>(mg/L) | pН   | Conductivity<br>(µS/cm) | Turbidity<br>(NTU) |
|-----|-----------|--------------------|----------------|------|-------------------------|--------------------|
| . – | Surface   | 15.63              | 9.46           | 7.87 | 157.5                   | 0.0                |
|     | 1         | 15.47              | 9.45           | 8.10 | 158.0                   | 0.0                |
|     | 2         | 15.26              | 9.45           | 8.21 | 158.2                   | 0.0                |
|     | 3         | 15.15              | 9.05           | 8.22 | 158.8                   | 0.0                |
|     | 4         | 14.90              | 9.02           | 8.23 | 158.2                   | 0.0                |
|     | 5         | 14.77              | 8.94           | 8.24 | 158.4                   | 0.0                |
|     | 6         | 14.45              | 8.05           | 8.07 | 158.9                   | 0.0                |
|     | 7         | 14.38              | 7.00           | 7.88 | 160.6                   | 3.3                |

**PRE- AND POST-TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009):

*Impact to non-targeted organisms* – Zooplankton were sampled at Lake Ellen for diversity and abundance just prior to treatment, and will be sampled again at six months and 12 months post-treatment. Results will be available by separate report.

Liquid rotenone formulation longevity – The shallow, shoreline areas of Lake Ellen were treated with CFT. Water samples were taken in an area of the lake where the heaviest concentrations of liquid rotenone were applied (boat launch on west end of the lake) 24 hours and eight weeks post-treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Samples were sent to an accredited lab for analyses per EPA methods. Samples were analyzed for 63 volatile organic compounds and 75 semi-volatile organic compounds, and detection limits were 0.2-10.0 ug/l, variously. In the 24-hour sample and the 8-week sample, the amounts of all 138 compounds potentially present in liquid rotenone formulations were below detection limits.

**Period of Toxicity** – Persistent rotenone toxicity will be determined by bioassay. Live trout will be held in a modified minnow trap (1 gal volume with free flow-through) in the lake and survival monitored. Trout exhibit signs of stress and lose equilibrium after three hours at rotenone concentrations of 0.05 ppm product (0.0025 ppm actual rotenone) at water temperatures of 47° F, and response is fairly uniform among individuals in similar circumstances. Rotenone is considered below detection limits when trout remain alive for at least 48 hours. Individual mortalities within a group of trout frequently occur due

to mechanical damage when handled or transported/confined in relatively small containers.

Bioassay was not completed before ice-up. However, following ice-out in the spring, bioassay will be completed to ensure detoxification.

# GENERAL DESCRIPTION OF TREATMENT PROJECT AND OTHER COMMENTS:

Treatment of Lake Ellen was conducted on October 7, 2008. Conditions were generally favorable. Weather was clear and sunny with light winds from the north. Rotenone was loaded and delivered the morning of the treatment. A crew of 7 WDFW employees was present. The treatment was staged at the boat launch located on the west end of the lake. Two pumper-boats were used to slurry powdered rotenone with lake water, and each boat had a crew of two employees. Two employees also crewed the airboat, which was used to apply liquid rotenone to shoreline areas. One employee managed shoreline operations. Application of powdered rotenone began at 0900 and was completed by noon. Liquid rotenone application was concentrated in the shallows of the west and east ends of the lake. Liquid rotenone application began at 1000 and was completed by noon.

Rehabilitation of Lake Ellen was considered successful. Dying green sunfish and largemouth bass were observed within three hours of beginning treatment. Small numbers of dead rainbow trout were also observed. The following day, October 8, large numbers of dead green sunfish and largemouth bass were observed around the shoreline, and no live fish were observed anywhere in the lake.

### **COST:**

Treatment of Lake Ellen required about 6 man-days (man-day = 8 hrs) of labor from pretreatment preparation (signing, sampling, rotenone and equipment transport) through treatment, clean up, and travel. Total cost of treatment (rotenone, labor @ \$268.00/man-day, travel, expendable equipment) was approximately \$6,100.00, including about \$1,608.00 for labor during the treatment and \$4,117.75 for rotenone (2,035 lbs powder @ \$1.65/lb @ 5.0%, delivered; 10 gal liquid @ \$76.00/gal). Estimated time for pre-rehabilitation proposals, general public outreach, post-rehabilitation sampling and reports added 3 days.

Washington Dept. of Fish & Wildlife LAKE ELLEN REHAB PROJECT Ferry Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (3 lab@esnnw.com (360) 459-3432

| 8260, µg/L (Water)                           | 1                                      | WITH BLK | LCS              | ake Ellen                               | MS      | MSD      | RP  |
|----------------------------------------------|----------------------------------------|----------|------------------|-----------------------------------------|---------|----------|-----|
|                                              | Reporting                              |          |                  |                                         |         | 4        |     |
| Date analyzed                                | Limits                                 | 10/15/08 | 10/15/08         | 10/15/08                                | 0/15/08 | 10/15/08 |     |
| Dichlorodifluoromethane                      | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Chloromethane                                | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Vinyl chloride                               | 0,2                                    | nd       |                  | nd                                      |         |          |     |
| Bromomethane                                 | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Chloroethane                                 | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Trichlorofluoromethane                       | 1.0                                    | nd       |                  | nd                                      |         |          |     |
|                                              | 1.0                                    | nd       | 78%              | nd                                      | 89%     | 78%      | 13' |
| 1,1-Dichloroethene                           | 1.0                                    | nd       | 70.70            | nd                                      | 0570    | 1070     |     |
| Methylene chloride                           |                                        |          |                  | nd                                      |         |          |     |
| trans-1,2-Dichloroethene                     | 1.0                                    | nd       |                  |                                         |         |          |     |
| 1,1-Dichloroethane                           | 1.0                                    | nd       |                  | nd                                      |         | ,        |     |
| cls-1,2-Dichloroethene                       | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 2,2-Dichloropropane                          | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Chloroform                                   | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Bromochloromethane                           | 1,0                                    | nd       |                  | nd                                      |         |          |     |
| 1,1,1-Trichloroethane                        | 1.0                                    | nd '     |                  | nd                                      |         |          |     |
| 1,2-Dichloroethane                           | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 1,1-Dichloropropene                          | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Carbon tetrachloride                         | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Benzene                                      | 1.0                                    | nd       | 93%              | nd                                      | 100%    | 90%      | 11' |
| Trichloroethene                              | 1.0                                    | nd       | 92%              | 'nd                                     | 104%    | 91%      | 139 |
| 1,2-Dichloropropane                          | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Dibromomethane                               | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Bromodichloromethane                         | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| cis-1,3-Dichloropropene                      | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Toluene                                      | 1.0                                    | nd       | 86%              | nd                                      | 102%    | 83%      | 21  |
| Irans-1,3-Dichloropropene                    | 1.0                                    | nd       | 5575             | nd                                      | ,       | ••••     |     |
|                                              | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 1,1,2-Trichloroethane                        | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 1,3-Dichloropropane                          | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Dibromochloromethane                         |                                        |          |                  |                                         |         |          |     |
| Tetrachloroethene                            | 1.0                                    | nd       | •                | nd                                      |         |          |     |
| 1,2-Dibromoethane (EDB)                      | 1.0                                    | nd       |                  | nd                                      | 40001   | 2001     | 477 |
| Chlorobenzene                                | 1.0                                    | nd       | 96%              | nd                                      | 106%    | 89%      | 179 |
| 1,1,1,2-Tetrachloroethane                    | 1,0                                    | nd       |                  | nd                                      |         |          |     |
| Elhylbenzene                                 | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| Kylenes                                      | 1,0                                    | nd       |                  | nd                                      |         |          |     |
| Styrene                                      | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 3romoform                                    | 1.0                                    | _ nd     |                  | nd                                      |         |          |     |
| 1,1,2,2-Tetrachloroethane                    | 1.0                                    | nd       |                  | nď                                      |         | •        |     |
| sopropylbenzene                              | 1.0                                    | nd       |                  | nd                                      | :*      |          |     |
| 1,2,3-Trichloropropane                       | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 3romobenzene                                 | 1.0                                    | nd       |                  | rid                                     |         |          |     |
| n-Propylbenzene                              | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 2-Chlorotoluene                              | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| I-Chlorotoluene                              | 1.0                                    | nd       |                  | nd                                      |         |          |     |
|                                              | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| 1,3,5-Trimethylbenzene                       |                                        |          |                  | nd                                      |         |          |     |
| ert-Butylbenzene                             | 1.0                                    | nd       |                  |                                         |         |          |     |
| ,2,4-Trimethylbenzene                        | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| sec-Bulyibenzene                             | 1,0                                    | nd       |                  | nd                                      |         |          |     |
| 3-Dichlorobenzene                            | 1,0                                    | nd       |                  | nd                                      |         |          |     |
| .4-Dichlorobenzene                           | 1.0                                    | nd       |                  | · nd                                    | ,       |          |     |
| sopropylloluene                              | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| ,2-Dichlorobenzene                           | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| -Bulylbenzene                                | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| ,2-Dibromo-3-Chloropropar                    | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| .2.4-Trichlorobenzene                        | 1.0                                    | . nd     |                  | nd                                      |         |          |     |
| Vaphthalene                                  | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| lexachioro-1,3-buladiene                     | 1.0                                    | nd       |                  | nd                                      |         |          |     |
| ,2,3-Trichlorobenzene                        | 1,0                                    | nđ       |                  | nd                                      |         |          |     |
|                                              |                                        |          | <del>, , ,</del> | *************************************** |         |          |     |
| Surrogate recoveries<br>Dibromofluoromethane | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 92%      | 90%              | 97%                                     | 92%     | 94%      |     |
| oluene-d8                                    |                                        | 97%      | 99%              | 93%                                     | 101%    | 98%      |     |
| 0100110-00                                   |                                        | 102%     | 104%             | 98%                                     | 117%    | 105%     |     |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Washington Dept. of Fish & Wildlife LAKE ELLEN REHAB PROJECT Ferry Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 I lab@esnnw.com

Analytical Results

| Analytical Results            |           |          | 1.5      |           | n        | a samtana | . 77::1:018 |
|-------------------------------|-----------|----------|----------|-----------|----------|-----------|-------------|
| 8270, μg/L                    |           | WITH BLK | LCS L    | ake Ellen | MS       | MSD       | RPD         |
| Matrix                        | Water     | Water    | Water    | Water     | Water    | Water     |             |
| Date extracted                | Reporting | 10/13/08 | 10/13/08 | 10/13/08  | 10/13/08 | 10/13/08  |             |
| Date analyzed                 | Limits    | 10/13/08 | 10/13/08 | 10/13/08  | 10/13/08 | 10/13/08  |             |
| ·                             |           |          |          |           |          |           | 19 70       |
| Pyridine                      | 2.0       | nd       |          | nd        | ,        |           |             |
| Aniline                       | 2.0       | nd       |          | nd        |          |           |             |
| Phenol                        | 2.0       | nd       |          | · nd      | 81%      | 85%       | 5%          |
| 2-Chlorophenol                | 2.0       | nd       |          | nd        | 106%     | 110%      | 4%          |
| Bis (2-chloroethyl) ether     | 2.0       | nd       |          | nd        |          |           |             |
| 1,3-Dichlorobenzene           | 2.0       | nd       |          | nd        |          |           |             |
| 1,4-Dichlorobenzene           | 2.0       | nd       | 124%     | - nd      | 102%     | 100%      | 2%          |
| 1,2-Dichlorobenzene           | 2.0       | nd       |          | nd        |          |           | •           |
| N-methylpyrrolidone           | 2.0       | nd       |          | nd        |          |           |             |
| Benzyl alcohol                | 2.0       | nd       |          | nd        |          |           |             |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |          | nd        |          |           |             |
| Bis (2-chlorolsopropyl) ether | 10.0      | nd       |          | nd        |          |           |             |
| 3,4-Methylphenol (m,p-cresc   | 2.0       | nd       |          | nd        |          |           |             |
| Hexacholorethane              | 2.0       | nd       |          | . nd      |          |           |             |
| N-Nitroso-di-n-propylamine    | 2.0       | nd       |          | nd        | 108%     | 109%      | 1%          |
| Nitrobenzene                  | 2.0       | nd       |          | nd        | *****    |           | •           |
| Isophorone                    | 2.0       | nd       |          | nd        |          |           |             |
| 2-Nitrophenol                 | 10.0      | nd       |          | nd        |          |           |             |
| 4-Nitrophenol                 | 10.0      | nd       |          | nd        |          |           |             |
| 2.4-Dimethylphenol            | 2.0       | nd       |          | nd        | 82%      | 84%       | 2%          |
|                               | 2.0       | nd       |          | nd        | 02,18    | 0-770     | 270         |
| Bis (2-chloroethoxy) methan   |           | nd       | •        | nd        |          |           |             |
| 2,4-Dichlorophenol            | 10.0      |          |          |           | 124%     | 120%      | 3%          |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | nd        | 12470    | 12076     | 3 70        |
| Naphthalene                   | 2.0       | nd       |          | nd        |          |           |             |
| 4-Chloroaniline               | 10.0      | nd       | 4000/    | nd        |          |           |             |
| Hexachlorobutadiene           | 2.0       | nd       | 126%     | nd        | 008/     | 000/      | . 00/       |
| 4-Chloro-3-methylphenol       | 10.0      | nd       |          | nd        | 66%      | 66%       | 0%          |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd        | *        | •         |             |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd        |          |           |             |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd        |          |           |             |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd        |          |           |             |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd        |          | •         |             |
| 2-Chloronaphthalene           | 2.0       | nd       |          | nd        |          |           |             |
| 2-Nitroaniline                | 10.0      | nd       |          | nd        |          |           |             |
| 1,4-Dinitrobenzene            | 10.0      | nd       |          | nd        |          |           |             |
| Dimethylphthalate             | 2.0       | . nd     |          | nd        |          |           |             |
| Acenaphthylene                | 0.2       | . nd     |          | nd        | •        |           |             |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          | nd        | •        |           |             |
| 2,6-Dinitrotoluene            | 2.0       | nd       |          | nd        |          | ,         |             |
| 1,2-Dinitrobenzene            | 2.0       | nd       |          | nd        |          |           |             |
| Acenaphthene                  | 0.2       | nd       | 131%     | nd        | 115%     | 117%      | 2%          |
| 3-Nitroaniline                | 10.0      | nd       | *        | nd        |          |           |             |
| Dibenzofuran                  | 2.0       | nd       |          | nd        |          |           |             |
| 2,4-Dinitrotoluene            | 2.0       | nd       |          | nd        | 94%      | 98%       | 4%          |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd       |          | nd        |          |           |             |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |          | nd        |          |           |             |
| 2,4-Dinitrophenol             | 10.0      | nd       |          | nd        |          |           |             |
| Fluorene                      | 0.2       | nd       |          | nd        |          |           |             |
| Linoisie                      | . 0.2     | 110      |          | iiu       |          |           |             |

Washington Dept. of Fish & Wildlife LAKE ELLEN REHAB PROJECT Ferry Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 I lab@esnnw.com

| Analytical Results           |           |          |          | au@esiiii | W.00111  |                                        |          |
|------------------------------|-----------|----------|----------|-----------|----------|----------------------------------------|----------|
| 8270, μg/L                   | - 4       | VITH BLK | LCS L    | ake Ellen | MS       | MSD                                    | RPD      |
| Matrix                       | Water     | Water    | Water    | Water     | Water    | Water                                  |          |
| Date extracted               | Reporting | 10/13/08 | 10/13/08 | 10/13/08  | 10/13/08 | 10/13/08                               |          |
| Date analyzed                | Limits    | 10/13/08 | 10/13/08 | 10/13/08  | 10/13/08 | 10/13/08                               |          |
| 4-Chlorophenylphenylether    | 2.0       | · nd     |          | nd -      |          |                                        |          |
| Diethylphthalate             | 2.0       | nd       |          | nd        |          |                                        |          |
| 4-Nitroaniline               | 10.0      | nd       |          | nd        |          |                                        |          |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       | •        | nd        |          |                                        |          |
| N-nitrosodiphenylamine       | 2.0       | nd       | 83%      | nd        |          |                                        |          |
| Azobenzene                   | 2.0       | nd       |          | nd        |          |                                        |          |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd        |          |                                        |          |
| Hexachlorobenzene            | 2.0       | nd       |          | nd        |          |                                        |          |
| Pentachlorophenol            | 10.0      | nd       |          | nd        |          |                                        |          |
| Phenanthrene                 | 0.2       | nd       | •        | nd        |          |                                        |          |
| Anthracene                   | 0.2       | nd       |          | nd        |          |                                        |          |
| Carbazole                    | 2.0       | nd       |          | nd        |          |                                        |          |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd        | •        |                                        |          |
| Fluoranthene                 | 0.2       | nd       | 126%     | nd        |          |                                        |          |
| Pyrene                       | 0.2       | nd       |          | nd        | 78%      | 79%                                    | · 1%     |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd        |          |                                        |          |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd        |          |                                        |          |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd        |          |                                        |          |
| Chrysene                     | 0.2       | nd       |          | nd        |          |                                        |          |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd        | . •      |                                        |          |
| Di-n-octyl phthalate         | 2.0       | nd       | 96%      | nd        |          |                                        |          |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd        |          |                                        |          |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | · .nd     |          |                                        |          |
| Benzo(a)pyrene               | 0.2       | . nd     | 80%      | nd        |          |                                        |          |
| Dibenzo(a,h)anthracene       | 0.2       | nd       | 94.0     | nd        |          |                                        |          |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd        |          |                                        |          |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd .     |          | nd        |          |                                        |          |
| indeno(1,2,3-cu)pyrene       | U.Z.      |          |          |           | ·····    | ************************************** |          |
| Surrogate recoveries         |           |          |          |           |          |                                        | <u> </u> |
| 2-Fluorophenol               |           | 80%      | 115%     | 135%      | 84%      | 83%                                    |          |
| Phenol-d6                    |           | 96%      | 105%     | 107%      | 88%      | 86%                                    |          |
| Nitrobenzene-d5              | a a       | 118%     | 124%     | 110%      | 86%      | 83%                                    |          |
| 2-Fluorobiphenyl             |           | 91%      | 134%     | 115%      | 89%      | 87%                                    |          |
| 2,4,6-Tribromophenol         |           | 69%      | 91%      | 67%       | 50%      | 52%                                    |          |
| 4-Terphenyl-d14              |           | 79%      | 130%     | 89%       | 75%      | 73%                                    |          |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits:

2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

ESN Environmental northwest inc Services Network

Olympia: (360) 459-4670 Bellevue: (360) 957-9872

# CHAIN-OF-CUSTODY RECORD

| PAGE / OF '                                            | Eller fehab                  | Ferry Co., WA         |                          | NOTES Number of Containers of Containers Laboratory |               | Somples |       | (yether)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DXTTO lodone |   |   |   |     |     |     |     |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | LABORATORY NOTES:           |                            |                              | 一年至りからある            | 200000                       | Turn Around Time: 24 HR 48 HR 5 DA        |
|--------------------------------------------------------|------------------------------|-----------------------|--------------------------|-----------------------------------------------------|---------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|---|---|-----|-----|-----|-----|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|----------------------------|------------------------------|---------------------|------------------------------|-------------------------------------------|
| DATE: 10/08/2008                                       | PROJECT NAME: LAD Elle Pahal | LOCATION: Lake Ellen  | COLLECTOR: Bill Bake     | 7 / <i>/\%/\</i> 6\                                 |               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |   |   |   |     |     |     |     |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | SAMPLE RECEIPT              | TOTAL NUMBER OF CONTAINERS | CHAIN OF CUSTODY SEALS YAWNA | SEALS INTACT? YANNA | RECEIVED GOOD COND./COLD     | NOTES:                                    |
| CLIENT: WASKINGTON DECENTIONED & FISH + WITHLAR (WEFW) | , Spoten Valley, WA 99216    | FAX: (509) 924 2441   | PROJECT MANAGER: Ell Bra | West of the second                                  | X             | X       | X     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X            |   |   |   |     |     |     |     |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                             | 199 Auch Horse 10/10/08 TO | (Signeture) DATE/TIME        | <b>3</b>            |                              | Pickup                                    |
| Separtment of                                          | iscovery Place               | 6                     |                          | Sample Cor                                          | 20.7          | 16:10   | 11:21 | 77: 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21:91        |   |   |   |     |     |     |     |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | DATE/TIME                   | 19 M                       | DATE/TIME                    |                     | SAMPLE DISPOSAL INSTRUCTIONS | □ ESN DISPOSAL (1) \$2.00 each □ Return □ |
| CLIENT: MASKING TEL                                    | ADDRESS: 78/5 M. Disewery    | PHONE: (507) 872-1001 | CLIENT PROJECT #:        | - E                                                 | 1 Sufre 11:08 |         |       | The proof of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont |              | 9 | • | 5 | 10. | 12. | 13. | 14. | (2). | 16. | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 18 | RELINQUISHED BY (Signature) | Bell Sar                   | RELINGUISHED BY (Signature)  |                     |                              | Desnois                                   |

WA Dept. of Fish & Wildlift LAKE ELLEN REHAB PROJECT Ferry Co., Washingtor

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 (360) 459-3432 Fa lab@esnnw.com

| Δna | lutical. | Results |
|-----|----------|---------|
|     |          |         |

| 8260, μg/L (Water)                            | Reporting | MTH BLK  | LCS     | Lake Ellen | MS     | MS   |
|-----------------------------------------------|-----------|----------|---------|------------|--------|------|
| Date analyzed                                 | Limits    |          |         |            |        |      |
| Diablaradifluoromathana                       | 1.0       | nd       |         | nd         |        |      |
| Dichlorodifluoromethane<br>Chloromethane      | 1.0       | nd<br>nd |         | · nd       |        |      |
| Vinyl chloride                                | 0.2       | nd       | •       | nd         |        |      |
| Bromomethane                                  | 1.0       | nd       |         | · nd       |        |      |
| Chloroethane                                  | 1.0       | nd       |         | nd         |        |      |
| Trichlorofluoromethane                        | 1.0       | nd       |         | nd         |        |      |
| Acetone                                       | 10.0      |          |         | nd         |        |      |
| 1,1-Dichloroethene                            | 1.0       | nd<br>nd |         | nd         |        |      |
| Methylene chloride                            | 1.0       | nd       |         | nd         | ·      |      |
| Methyl-t-butyl ether (MTBE)                   | 1.0       | nd       |         | nd         |        |      |
| trans-1,2-Dichloroethene                      | 1.0       | nd       |         | nd         |        |      |
| 1,1-Dichloroethane                            | 1.0       | nd       |         | nd         |        |      |
| 2-Butanone (MEK)                              | 10.0      | nd       |         | · nd       |        |      |
|                                               | 1.0       | nd       |         | nd nd      |        |      |
| cis-1,2-Dichloroethene<br>2,2-Dichloropropane | 1.0       | nd       |         | nd         |        |      |
|                                               | 1.0       |          |         | nd         |        |      |
| Chloroform                                    | 1.0       | nd       |         | nd         |        |      |
| Bromochloromethane                            | 1.0       | nd       |         | nd         |        |      |
| 1,1,1-Trichloroethane                         | 1.0       | nd<br>nd |         | nd         |        |      |
| 1,2-Dichloroethane (EDC)                      | 1.0       | nd       |         | nd         |        |      |
| 1,1-Dichloropropene                           | 1.0       | nd       |         | nd         |        |      |
| Carbon tetrachloride                          | 1.0       | nd       | 101%    | nd         | 100%   | 100  |
| Benzene                                       | 1.0       | nd       | 93%     | . nd       | 93%    | 93   |
| Trichloroethene (TCE)                         |           |          | 93%     |            | 9376   | 93   |
| 1,2-Dichloropropane                           | 1.0       | nd       |         | nd         |        |      |
| Dibromomethane                                | 1.0       | nd       |         | nd .       |        |      |
| Bromodichloromethane                          | 1.0       | nd       |         | nd         |        |      |
| 4-Methyl-2-pentanone (MIBK)                   | 1.0       | nd       |         | nd         |        |      |
| cis-1,3-Dichloropropene                       | 1.0       | nd<br>   | . 4400/ | nd         | 4400/  | 440  |
| Toluene                                       | 1.0       | nd       | 116%    | nd         | 116%   | 116' |
| rans-1,3-Dichloropropene                      | 1.0       | nd       |         | nd         |        |      |
| 1,1,2-Trichloroethane                         | 1.0       | nd       | •       | nd         |        |      |
| 2-Hexanone                                    | 1.0       | nd       |         | nd         |        |      |
| 1,3-Dichloropropane                           | 1.0       | nd       |         | nd         |        |      |
| Dibromochloromethane                          | 1.0       | nd       |         | nd         | 40.001 |      |
| Tetrachloroethene (PCE)                       | 1.0       | nd       | 78%     | nd         | 130%   | 1429 |
| 1,2-Dibromoethane (EDB)                       | 1.0       | . nd     |         | nd         |        |      |
| Chlorobenzene                                 | 1.0       | nd       |         | nd         |        |      |
| 1,1,1,2-Tetrachloroethane                     | 1.0       | nd ·     |         | nd         |        |      |
| Ethylbenzene                                  | 1.0       | nd       | 124%    | nd         | 124%   | 1239 |
| Xylenes                                       | 3.0       | nd       | 123%    | nd         | 125%   | 1209 |
| Styrene                                       | 1.0       | nd       |         | nd         |        |      |
| Bromoform                                     | 1.0       | nd       |         | nd         |        |      |
| 1,1,2,2-Tetrachloroethane                     | 1.0       | nd       |         | nd         |        |      |
| sopropylbenzene                               | 1.0       | nd       |         | nd         |        |      |
| 1,2,3-Trichloropropane                        | 1.0       | nd       |         | nd         |        |      |
| Bromobenzene                                  | 1.0       | nd       |         | nd         |        |      |
| n-Propylbenzene                               | 1.0       | nd       |         | nd         |        |      |
| 2-Chlorotoluene                               | 1.0       | nd       |         | nd         |        |      |
| I-Chlorotoluene                               | 1.0       | nd       |         | nd         |        |      |
| 1,3,5-Trimethylbenzene                        | 1.0       | nd       |         | nd         |        |      |
| ert-Butylbenzene                              | 1.0       | nd       |         | nd         |        |      |
| 1,2,4-Trimethylbenzene                        | 1.0       | nd       |         | nd         |        |      |
| sec-Butylbenzene                              | 1.0       | nd       |         | nd         |        |      |
| ,3-Dichlorobenzene                            | 1.0       | nd       |         | nd         |        |      |
| ,4-Dichlorobenzene                            | 1.0       | nd       |         | nd         |        |      |
| sopropyltoluene                               | 1.0       | nd       |         | nd         |        |      |
| ,2-Dichlorobenzene                            | 1.0       | nd       |         | nd         |        |      |
| a-Butylbenzene                                | 1.0       | nd       |         | nd         |        |      |
| ,2-Dibromo-3-Chloropropane                    | 1.0       | nd       |         | nd         |        |      |
| 1,2,4-Trichlorobenzene                        | 1.0       | nd       |         | nd         |        |      |
| Naphthalene                                   | 1.0       | nd       | 85%     | nd         |        |      |
| lexachloro-1,3-butadiene                      | 1.0       | nd       | 00.0    | nd         |        |      |
| ,2,3-Trichlorobenzene                         | 1.0       | nd       |         | nd         |        |      |
| Surrogate recoveries                          |           |          |         |            |        |      |
| Dibromofluoromethane                          | :         | 88%      | 85%     | 109%       | 101%   | 989  |
| oluene-d8                                     |           | 104%     | 107%    | 113%       | 121%   | 1189 |
| -Bromofluorobenzene                           |           | 103%     | 107%    | 111%       | 114%   | 1149 |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

| •   |
|-----|
| •   |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
| •   |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
| ,   |
|     |
|     |
| •.  |
|     |
| • . |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81216.1 WDFW

Client:

Client Job Name:

Lake Ellen Rehab

Analytical Results

| 8270, μg/L                    |           | MTH BLK  | LCS      | Lake Ellen Rehab | MS       | MSD           | RPD   |
|-------------------------------|-----------|----------|----------|------------------|----------|---------------|-------|
| Matrix                        | Water     | Water    | Water    | Water            | Water    | Water         |       |
| Date extracted                | Reporting | 12/17/08 | 12/17/08 | 12/17/08         | 12/17/08 | 12/17/08      |       |
| Date analyzed                 | Limits .  | 12/17/08 | 12/17/08 | 12/17/08         | 12/17/08 | 12/17/08      |       |
| Pyridine                      | 2.0       | nd       |          | nd               |          |               |       |
| Aniline                       | 2.0       | nd       |          | nd               |          |               |       |
| Phenol                        | 2.0       | nd       |          | nd               | 94%      | 93%           | 1%    |
|                               | 2.0       | nd       |          | nd               | 115%     | 111%          | 4%    |
| 2-Chlorophenol                | 2.0       | nd       |          | nd               | 11070    | 7,1170        | 470   |
| Bis (2-chloroethyl) ether     | 2.0       | nd       |          | · nd             |          |               |       |
| 1,3-Dichlorobenzene           | 2.0       | nd       | 103%     | nd               | 101%     | 102%          | . 1%  |
| 1,4-Dichlorobenzene           | 2.0       | nd       | 10376    | nd               | 10170    | 102.70        | 1 70  |
| 1,2-Dichlorobenzene           | 2.0       |          |          | nd               |          |               |       |
| N-methylpyrrolidone           |           | nd       |          |                  |          |               |       |
| Benzyl alcohol                | 2.0       | nd       |          | nd<br>           |          |               |       |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |          | nd<br>- 1        |          |               |       |
| Bis (2-chloroisopropyl) ether | 10.0      | nd       |          | nd               |          |               |       |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd       |          | nd               |          |               |       |
| Hexacholorethane              | 2.0       | nd       |          | nd               |          |               |       |
| N-Nitroso-di-n-propylamine    | 2.0       | nd       |          | nd               | 123%     | 122%          | 1%    |
| Nitrobenzene                  | 2.0       | nd       |          | nd               |          |               |       |
| Isophorone                    | . 2.0     | nd       |          | nd               |          |               |       |
| 2-Nitrophenol                 | 10.0      | nd       |          | nd               |          |               | •     |
| 4-Nitrophenol                 | 10.0      | nd ,     |          | nd               |          |               |       |
| 2,4-Dimethylphenol            | 2.0       | nd       |          | nd               | 107%     | 107%          | 0%    |
| Bis (2-chloroethoxy) methane  | 2.0       | nd       |          | nd               |          | •             | •     |
| 2,4-Dichlorophenol            | 10.0      | nd       |          | nd               |          |               |       |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | • nd             | 116%     | 118%          | 2%    |
| Naphthalene                   | 2.0       | nd       |          | nd               |          |               |       |
| 4-Chloroaniline               | 10.0      | nd -     |          | nd               |          |               |       |
| Hexachlorobutadiene           | 2.0       | nd       | 123%     | nd               |          | •             |       |
| 4-Chloro-3-methylphenol       | 10.0      | nd       |          | nd               | 81%      | 81%           | 0%    |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd               |          | •             |       |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd .             |          |               |       |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd               |          |               |       |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd               |          |               |       |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd               |          |               |       |
| 2-Chloronaphthalene           | 2.0       | nd       |          | nd               |          |               |       |
| 2-Nitroaniline                | 10.0      | nd       |          | nd               |          |               |       |
| 1,4-Dinitrobenzene            | 10.0      | nd       |          | nd               |          |               |       |
| Dimethylphthalate             | 2.0       | nd       |          | nd               |          |               |       |
| Acenaphthylene                | 0.2       | nd       |          | · nd             |          |               |       |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          | nd               |          |               |       |
| 2,6-Dinitrotoluene            | 2.0       | nd       |          | nd               |          |               |       |
| •                             | 2.0       |          |          | · nd             |          |               |       |
| 1,2-Dinitrobenzene            | 0.2       | nd<br>nd | 131%     | nd               | 98%      | 97%           | 1%    |
| Acenaphthene                  | 10.0      |          | 13170    | nd               | 30 /6    | <b>∂</b> 1 /0 | 1 70  |
| 3-Nitroaniline                |           | nd       |          |                  |          |               |       |
| Dibenzofuran                  | 2.0       | nd       |          | nd               | 000/     | 070/          | . 40/ |
| 2,4-Dinitrotoluene            | 2.0       | nd       |          | nd<br>nd         | 88%      | 87%           | 1%    |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd<br>   |          | nd<br>           |          | •             | •     |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |          | , nd             |          |               |       |
| 2,4-Dinitrophenol             | 10.0      | nđ       |          | nd               |          |               |       |
| Fluorene                      | 0.2       | nd       |          | nd               |          |               |       |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81216.1

Client:

WDFW

Client Job Name:

Lake Ellen Rehab

### Analytical Results

| 8270, μg/L                   | •         | MTH BLK  | LCS                                     | Lake Ellen Rehab | MS       | MSD      | RPD |
|------------------------------|-----------|----------|-----------------------------------------|------------------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water                                   | Water            | Water    | Water    |     |
| Date extracted               | Reporting | 12/17/08 | 12/17/08                                | 12/17/08         | 12/17/08 | 12/17/08 |     |
| Date analyzed                | Limits    | 12/17/08 | 12/17/08                                | 12/17/08         | 12/17/08 | 12/17/08 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |                                         | nd .             | •        |          | •   |
| Diethylphthalate             | 2.0       | nd       |                                         | nd               |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |                                         | nd               |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |                                         | nd nd            |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 125%                                    | nd nd            |          |          |     |
| Azobenzene                   | 2.0       | nd       |                                         | nd               |          | •        |     |
| 4-Bromophenylphenylether     | 2.0       | nd       | •                                       | nd               |          |          |     |
| Hexachlorobenzene            | 2.0       | nd       |                                         | nd               |          |          |     |
| Pentachlorophenol            | 10.0      | nd       |                                         | nd               |          |          |     |
| Phenanthrene                 | 0.2       | . nd     |                                         | ind              |          |          |     |
| Anthracene                   | 0.2       | nd       |                                         | nd               |          |          |     |
| Carbazole                    | 2.0       | nd       |                                         | nd               |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |                                         | nd               |          |          |     |
| Fluoranthene                 | 0.2       | nd .     | 127%                                    | nd               |          |          |     |
| Pyrene                       | 0.2       | nd       |                                         | nd               | 89%      | 86%      | 3%  |
| Butylbenzylphthalate         | 2.0       | nd       |                                         | nd               |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |                                         | nd               |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |                                         | nd               |          |          |     |
| Chrysene                     | 0.2       | nd       |                                         | nd               |          |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | . nd     |                                         | nd               |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 86%                                     | nd ·             |          |          |     |
| Benzo(b)fluoranthene         | 0.2       | nd       | 0070                                    | nd               |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |                                         | . nd             |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd -     | 82%                                     | nd               |          |          |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       | 0270                                    | nd               |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |                                         | nd               |          |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |                                         | nd               |          | r        |     |
|                              |           |          | *************************************** |                  |          |          |     |
| Surrogate recoveries         |           |          |                                         |                  |          |          |     |
| 2-Fluorophenol               |           | 92%      | 112%                                    | 95%              | 89%      | 91%      |     |
| Phenol-d6                    |           | 95%      | 125%                                    | 62%              | 96%      | 99%      |     |
| Nitrobenzene-d5              |           | 111%     | 131%                                    | 93%              | 92%      | 93%      |     |
| 2-Fluorobiphenyl             |           | 86%      | 125%                                    | 80%              | 81%      | 84%      |     |
| 2,4,6-Tribromophenol         |           | 63%      | 127%                                    | 61%              | 78%      | 78%      |     |
| 4-Terphenyl-d14              |           | 85%      | 82%                                     | 82%              | 79%      | 78%      |     |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

# POST-REHABILITATION REPORT

Water: Hatch Lake and Little Hatch Lake

Location: Sec 30 and 31, T35N, R40E; approximately 5.25 miles southeast of Colville,

Stevens County, WA.

DATES TREATED: October 8 and 9, 2008

**PURPOSE:** Improve trout survival and growth through reduction of undesirable fish populations.

**LISENCED APPLICATOR:** Robert Jateff, Washington Department of Fish and Wildlife (WDFW), District 6 Fisheries Biologist, Pesticide License # 74965. Jon Anderson, WDFW, Native Resident Species Fisheries Manager, Pesticide License # 69176.

# LAKE DESCRIPTIONS full pool and (at treatment, if different):

## Hatch Lake

Full pool at treatment.

Surface acres: 34.0

Depth: average ~ 16 ft; maximum 34 ft

Volume: 540 acre-feet

Weight of Water: 1,407,678,192 lbs.

Connectivity: Inlets - Spill-over from Little Hatch Lake during high-water

years. Outlet – Intermittent outflow to adjacent wetlands.

### Little Hatch Lake

Full pool at treatment.

Surface acres: 14.0

Depth: average ~ 3 ft; maximum 4 ft

Volume: 74 acre-feet

Weight of Water: 192,904,048 lbs.

Connectivity: Inlets - Intermittent stream channel from Keogh Lake.

Outlet – Spill-over into Hatch Lake during high-water years.

### TREATMENT DESCRIPTION:

**Toxicant used:** Rotenone - Cube powdered Fish Toxicant EPA Reg # 6458-6; Liquid CFT Legumine EPA Reg # 75338-2

|                   |            | Actual Roter | none used |               |
|-------------------|------------|--------------|-----------|---------------|
|                   |            | Powder       | Liquid    | •             |
| Water             | Date       | lbs @ conc.  | gals @ 5% | ppm (product) |
| Hatch Lake        | 10/09/2008 | 880 @ 7.0%   | 8 (CFT)   | 1.0           |
| Little Hatch Lake | 10/08/2008 | 165 @ 7.0%   | 2 (CFT)   | 1.0           |
| Equivalent        | •          | 1,463 @ 5.0% | 10        |               |

All powder was slurried with lake water, and liquid was mixed with lake water and sprayed in shallow waters.

The lake was treated at a rotenone concentration of 1 ppm product (0.05 ppm actual rotenone).

Detoxification Procedures: treated waters naturally detoxified. No detoxification was necessary, as there was no surface water connection to the outlet stream.

### SPECIES OF FISH ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

Water - species, size, estimated abundance

**Hatch Lake** 

Yellow perch

3-6"; thousands (maximum estimate = 75,000)

Little Hatch Lake

Rainbow trout

3-5"; tens (maximum estimate = 100)

### PHYSICAL CHARACTERISTICS OF THE LAKE DURING TREATMENT:

<u>Hatch Lake</u> Pre-treatment water quality parameters – October 3, 2008.

| Depth<br>(m) | Water temp<br>(°C) | D.O.<br>(mg/L) | рH   | Conductivity (µS/cm) | Turbidity<br>(NTU) |
|--------------|--------------------|----------------|------|----------------------|--------------------|
| Surface      | 16.01              | 10.95          | 9.36 | 508.6                | 2.0                |
| . 1          | 15.31              | 9.60           | 9.40 | 508.7                | 3.7                |
| 2            | 14.85              | 7.93           | 9.43 | 511.1                | 3.8                |
| 3            | 14.70              | 5.23           | 9.36 | 514.1                | 3.6                |
| 4            | 14.42              | 4.03           | 9.32 | 516.6                | 3.6                |

<u>Little Hatch Lake</u> Pre-treatment water quality parameters – October 6, 2008.

| Depth<br>(m) | Water temp<br>(°C) | D.O.<br>(mg/L) | рН   | Conductivity (µS/cm) | Turbidity (NTU) |
|--------------|--------------------|----------------|------|----------------------|-----------------|
| Surface      | 13.08              | 5.89           | 7.99 | 487.3                | 0.0             |
| 1            | 12.97              | 6.23           | 8.09 | 489.9                | 0.0             |

**PRE- AND POST-TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009):

*Impact to non-targeted organisms* – Zooplankton were sampled at Hatch and Little Hatch lakes for diversity and abundance just prior to treatment, and will be sampled again at six months and 12 months post-treatment. Results will be available by separate report.

Liquid rotenone formulation longevity – The shallow, shoreline areas of Hatch and Little Hatch lakes were treated with CFT. Water samples were taken in an area of the lake where the heaviest concentrations of liquid rotenone were applied (near boat launch on northeast side of Hatch Lake and from shoreline on south end of Little Hatch Lake) 24 hours and eight weeks post-treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Samples were sent to an accredited lab for analyses per EPA methods. Samples were analyzed for 63 volatile organic compounds and 75 semi-volatile organic compounds, and detection limits were 0.2-10.0 ug/l, variously. In the 24-hour sample and the 8-week sample, the amounts of all 138 compounds potentially present in liquid rotenone formulations were below detection limits.

*Period of Toxicity* – Persistent rotenone toxicity will be determined by bioassay. Live trout will be held in a modified minnow trap (1 gal volume with free flow-through) in the lake and survival monitored. Trout exhibit signs of stress and lose equilibrium after three hours at rotenone concentrations of 0.05 ppm product (0.0025 ppm actual rotenone) at water temperatures of 47° F, and response is fairly uniform among individuals in similar circumstances. Rotenone is considered below detection limits when trout remain alive for at least 48 hours. Individual mortalities within a group of trout frequently occur due to mechanical damage when handled or transported/confined in relatively small containers.

Bioassay was not completed before ice-up. However, following ice-out in the spring, bioassay will be completed to ensure detoxification.

# GENERAL DESCRIPTION OF TREATMENT PROJECT AND OTHER COMMENTS:

### Hatch Lake

Treatment of Hatch Lake was conducted on October 9, 2008. Conditions were generally favorable. Weather was clear and sunny with light winds from the north-west. Rotenone was loaded and delivered to the lake following treatment of Williams Lake earlier in the morning. A crew of 7 WDFW employees was present. The treatment was staged at the boat launch located on the north-east side of the lake. Two pumper-boats were used to slurry powdered rotenone with lake water, and each boat had a crew of two employees. Two employees also crewed the airboat, which was used to apply liquid rotenone to shoreline areas. One employee managed shoreline operations. Application of powdered rotenone began at 1300 and was completed by 1700. Liquid rotenone application was concentrated in the shallows around the entire lake. Liquid rotenone application began at 1400 and was completed by 1630.

Rehabilitation of Hatch Lake was considered successful. Dying yellow perch were observed within three hours of beginning treatment. The following day, large numbers of dead yellow perch were observed around the shoreline. No rainbow trout were observed on either day.

## Little Hatch Lake

Treatment of Little Hatch Lake was conducted on October 8, 2008. Weather was clear and sunny with no wind and temperatures near 60°F. Rotenone was loaded and delivered to the lake on the morning of treatment. A crew of 2 WDFW employees was present. The treatment was staged from the south side of the lake, near a primitive boat launch. Two employees crewed a pumper-boat which was used to slurry powdered rotenone with lake water. Immediately following application of powdered rotenone, the two employees used an airboat to apply liquid rotenone to shoreline areas. Application of powdered rotenone began at 0900 and was completed by 1000. Liquid rotenone application was concentrated in the shallows around the entire lake. Liquid rotenone application began at 1000 and was completed by 1100.

Little Hatch Lake was treated to prevent re-infestation of Hatch Lake with yellow perch during years of high water, through surface water connection. However, treatment of Little Hatch Lake yielded no yellow perch, resulting only in the eradication of a small number of rainbow trout which had been planted earlier in the spring. Despite the absence of yellow perch during this treatment, it seems prudent to consider treating this lake again if/when Hatch Lake receives rehabilitation in the future, if there are years of high water in the interim.

### COST:

Treatment of Hatch and Little Hatch lakes required about 8 man-days (man-day = 8 hrs) of labor from pre-treatment preparation (signing, sampling, rotenone and equipment transport) through treatment, clean up, and travel. Total cost of treatment (rotenone, labor @ \$268.00/man-day, travel, expendable equipment) was approximately \$5,000.00, including about \$2,144.00 for labor during the treatment and \$2484.25 for rotenone (1,045 lbs powder @ \$1.65/lb @ 5.0%, delivered; 10 gal liquid @ \$76.00/gal). Estimated time for pre-rehabilitation proposals, general public outreach, post-rehabilitation sampling and reports added 3 days.

Washington Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com

| 8260, µg/L (Water)                          |                                        | MTHBLK   | LCSH     | atch Lake | MS                                      | MSD        | RPI |
|---------------------------------------------|----------------------------------------|----------|----------|-----------|-----------------------------------------|------------|-----|
| Date analyzed                               | Reporting - Limits                     | 10/15/08 | 10/15/08 | 10/15/08  | 10/15/08                                | 10/15/08   |     |
| Date analyzed                               |                                        |          |          |           | *************************************** |            |     |
| Dichlorodifluoromethane                     | 1.0                                    | nd       |          | nd<br>nd  |                                         |            |     |
| Chloromethane                               | 1.0<br>0.2                             | nd<br>nd |          | nd        |                                         |            |     |
| Vinyl chloride                              | 1.0                                    | nd       | •        | . nd      |                                         |            |     |
| Bromomethane                                | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Chloroethane                                | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Trichlorofluoromethane                      | 1.0                                    | nd       | 78%      | nd        | 89%                                     | 78%        | 139 |
| 1,1-Dichloroethene                          | 1.0                                    | nd       | 7075     | nd        |                                         |            |     |
| Methylene chloride                          | 1.0                                    | nd       |          | nd        |                                         |            |     |
| trans-1,2-Dichloroethene 1.1-Dichloroethane | 1.0                                    | nd       |          | nd        |                                         | •          |     |
| cis-1,2-Dichloroethene                      | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 2,2-Dichloropropane                         | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Chloroform                                  | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Bromochioromethane                          | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,1,1-Trichloroethane                       | 1,0                                    | nd       |          | nd        |                                         |            |     |
| 1,2-Dichloroethane                          | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,1-Dichloropropene                         | 1,0                                    | nd       |          | nd        |                                         |            |     |
| Carbon tetrachloride                        | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Benzene                                     | 1.0                                    | nd       | 93%      | nd        | 100%                                    | 90%        | 119 |
| Trichloroethene                             | 1.0                                    | nd       | 92%      | nd        | 104%                                    | 91%        | 139 |
| 1,2-Dichloropropane                         | 1.0                                    | nd       |          | nd        |                                         | •          |     |
| Dibromomethane                              | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Bromodichloromethane                        | 1.0                                    | nd       | •        | nd        |                                         |            |     |
| cis-1,3-Dichloropropene                     | 1.0                                    | nđ       |          | nd        |                                         |            |     |
| Toluene                                     | 1.0                                    | nd       | 86%      | nd        | 102%                                    | 83%        | 219 |
| trans-1,3-Dichloropropene                   | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,1,2-Trichloroethane                       | 1.0                                    | nd       |          | nd        |                                         | ,          |     |
| 1.3-Dichloropropane                         | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Dibromochloromethane                        | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Tetrachloroethene                           | 1.0                                    | nd       | •        | nd        |                                         |            |     |
| 1,2-Dibromoethane (EDB)                     | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Chlorobenzene                               | 1.0                                    | nd       | 96%      | nd        | 106%                                    | 88%        | 179 |
| 1,1,1,2-Tetrachloroethane                   | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Ethylbenzene                                | 1.0                                    | nd       |          | - nd      |                                         | :          |     |
| Xylenes                                     | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Styrene                                     | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Bromoform                                   | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,1,2,2-Tetrachloroethane                   | 1.0                                    | nd       | *        | nd        |                                         |            |     |
| Isopropylbenzene                            | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,2,3-Trichloropropane                      | 1.0                                    | nd       |          | · nd      |                                         |            |     |
| Bromobenzene                                | 1.0                                    | nd       |          | nd        |                                         |            |     |
| n-Propylbenzene                             | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 2-Chlorotoluene                             | 1,0                                    | nd       |          | nd        |                                         |            |     |
| 4-Chlorotoluene                             | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,3,5-Trimethylbenzene                      | 1.0                                    | nd       |          | nd        |                                         |            |     |
| tert-Butylbenzene                           | 1.0 ·                                  | nd       |          | nd        |                                         |            |     |
| 1,2,4-Trimethylbenzene                      | 1,0                                    | nd       |          | nd        |                                         |            |     |
| sec-Bulyibenzene                            | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,3-Dichlorobenzene                         | 1.0                                    |          |          | nd        |                                         |            |     |
| 1,4-Dichlorobenzene                         | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Isopropyltoluene                            | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,2-Dichlorobenzene                         | 1.0                                    | nd       |          | nd        |                                         |            |     |
| n-Butylbenzene                              | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,2-Dibromo-3-Chloropropar                  | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,2,4-Trichlorobenzene                      | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Naphthalene                                 | 1.0                                    | nd       |          | nd        |                                         |            |     |
| Hexachloro-1,3-butadiene                    | 1.0                                    | nd       |          | nd        |                                         |            |     |
| 1,2,3-Trichlorobenzene                      | 1.0                                    | nd .     |          | nd        |                                         |            |     |
| Surrogate recoveries                        | Sagaria estin <sup>er</sup> e e e ince |          |          |           |                                         |            |     |
| Dibromofiuoromethane                        |                                        | 92%      | 80%      | 95%       | 92%                                     | 94%<br>98% |     |
| Toluene-d8                                  |                                        | 97%      | 99%      | 98%       | 101%                                    | 105%       |     |
| 4-Bromofluorobenzene                        | 1 12 10 10 10                          | 102%     | 104%     | 103%      | 117%                                    | 10076      |     |

Data Qualifiers and Analytical Comments
nd - not detected at listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

Washington Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 F lab@esnnw.com

Analytical Results

| 8270, μg/L                             |           | NTH BLK  |          | atch Lake | MS       | MSD      | RPD                                     |
|----------------------------------------|-----------|----------|----------|-----------|----------|----------|-----------------------------------------|
| Matrix                                 | Water     | Water    | Water    | Water     | Water    | Water    | *************************************** |
| Date extracted                         | Reporting | 10/16/08 | 10/16/08 | 10/16/08  | 10/13/08 | 10/13/08 |                                         |
| Date analyzed                          | Limits    | 10/16/08 | 10/16/08 | 10/16/08  | 10/13/08 | 10/13/08 |                                         |
| Pyridine                               | 2.0       | nd       |          | nd        |          |          |                                         |
| Aniline                                | 2.0       | nd       |          | nd        |          |          |                                         |
|                                        | 2.0       | nd       |          | nd        | 81%      | 85%      | 5%                                      |
| Phenol                                 | 2.0       | nd       |          | nd        | 106%     | 110%     | 4%                                      |
| 2-Chlorophenol                         | . 2.0     | nd       |          | nd        | 10070    | 11070    | 770                                     |
| Bis (2-chloroethyl) ether              | 2.0       | nd       |          | nd        |          |          |                                         |
| 1,3-Dichlorobenzene                    | 2.0       | nd       | 120%     | nd        | 102%     | 100%     | 2%                                      |
| 1,4-Dichlorobenzene                    | 2.0       | nd       | 12070    | nd        | 102 70   | 10070    | 270                                     |
| 1,2-Dichlorobenzene                    |           |          |          | nd        |          |          | •                                       |
| N-methylpyrrolidone                    | 2.0       | nd<br>   |          |           |          |          |                                         |
| Benzyl alcohol                         | 2.0       | nd       |          | nd,       | •        |          |                                         |
| 2-Methylphenol (o-cresol)              | 2.0       | nd       |          | nd        |          |          |                                         |
| Bis (2-chloroisopropyl) ether          | 10.0      | nd       |          | nd        |          |          |                                         |
| 3,4-Methylphenol (m,p-cresc            | 2.0       | nd       |          | nd        |          |          |                                         |
| Hexacholorethane                       | 2.0       | nd       |          | nd        |          |          | 4.0.4                                   |
| N-Nitroso-di-n-propylamine             | 2.0       | nd       |          | nd        | 108%     | 109%     | 1%                                      |
| Nitrobenzene                           | 2.0       | · nd     |          | nd        |          |          |                                         |
| Isophorone                             | 2.0       | nd       |          | nd        |          |          |                                         |
| 2-Nitrophenol                          | 10.0      | nd       |          | nd        |          |          |                                         |
| 4-Nitrophenol                          | 10.0      | nd       |          | nd        |          |          |                                         |
| 2,4-Dimethylphenol                     | 2.0       | nd       |          | nd        | 82%      | 84%      | 2%                                      |
| Bis (2-chloroethoxy) methan            | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,4-Dichlorophenol                     | 10.0      | nd       |          | nd        |          |          |                                         |
| 1,2,4-Trichlorobenzene                 | 2.0       | nd       | •        | nd        | 124%     | 120%     | 3%                                      |
| Naphthalene                            | 2.0       | nd       | * .      | nd        |          |          |                                         |
| 4-Chloroaniline                        | 10.0      | nd       |          | nd        |          |          |                                         |
| Hexachlorobutadiene                    | 2.0       | nd       | 129%     | nd        |          |          |                                         |
| 4-Chloro-3-methylphenol                | 10.0      | nd       |          | nd        | 66%      | 66%      | 0%                                      |
| 2-Methylnapthalene                     | 2.0       | nd       |          | nd        |          |          |                                         |
| 1-Methylnapthalene                     | 2.0       | nd       |          | nd        |          |          |                                         |
| Hexachlorocyclopentadiene              | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,4,6-Trichlorophenol                  | 10.0      | nd       |          | nd        |          |          |                                         |
| 2,4,5-Trichlorophenol                  | 10.0      | nd       |          | nd        |          |          | •                                       |
| 2,4,5-1 nonorophenor                   | 2.0       | nd       |          | , nd      | •        | •        |                                         |
| 2-Ontoronaphinaterie<br>2-Nitroaniline | 10.0      | nd       |          | nd        |          |          |                                         |
|                                        | 10.0      | nd       |          | nd        |          | 4        |                                         |
| 1,4-Dinitrobenzene                     |           |          |          | nd        |          |          |                                         |
| Dimethylphthalate                      | 2.0       | nd       |          |           |          |          |                                         |
| Acenaphthylene                         | 0.2       | nd<br>   |          | nd        |          |          |                                         |
| 1,3-Dinotrobenzene                     | 10.0      | nd       |          | nd        |          |          |                                         |
| 2,6-Dinitrotoluene                     | 2.0       | nd       |          | nd        |          |          |                                         |
| 1,2-Dinitrobenzene                     | 2.0       | nd       | 4.551    | nd        | 4 4 MA   | 44-401   | تفس                                     |
| Acenaphthene                           | 0.2       | nd       | 102%     | nd        | 115%     | 117%     | 2%                                      |
| 3-Nitroaniline                         | 10.0      | nd       |          | nd        |          |          |                                         |
| Dibenzofuran                           | 2.0       | nd       |          | nd        |          | ,        |                                         |
| 2,4-Dinitrotoluene                     | 2.0       | nd       |          | nd        | 94%      | 98%      | 4%                                      |
| 2,3,4,6-Tetrachlorophenol              | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,3,5,6-Tetrachlorophenol              | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,4-Dinitrophenol                      | 10.0      | nd       |          | nd        |          |          |                                         |
| Fluorene                               | 0.2       | nd       |          | nd        |          |          |                                         |

Washington Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 F lab@esnnw.com

|  | Results |  |
|--|---------|--|
|  |         |  |

| 8270, μg/L                   |           | WITH BLK | LCS H    | atch Lake | MS       | MSD      | RPD     |
|------------------------------|-----------|----------|----------|-----------|----------|----------|---------|
| Matrix                       | Water     | Water    | Water    | Water     | Water    | Water    | L 31.25 |
| Date extracted               | Reporting | 10/16/08 | 10/16/08 | 10/16/08  | 10/13/08 | 10/13/08 |         |
| Date analyzed                | Limits    | 10/16/08 | 10/16/08 | 10/16/08  | 10/13/08 | 10/13/08 |         |
| 4.014                        | 2.0       | nd.      |          | nd        |          |          |         |
| 4-Chlorophenylphenylether    | 2.0       | nd<br>nd |          | nd        |          |          |         |
| Diethylphthalate             | 10.0      | nd nd    | •        | nd        |          |          |         |
| 4-Nitroaniline               | 10.0      |          | •        | nd        |          |          |         |
| 4,6-Dinitro-2-methylphenol   |           | nd       | 132%     | nd        |          |          |         |
| N-nitrosodiphenylamine       | 2.0       | nd<br>nd | 13270    | nd        |          |          |         |
| Azobenzene                   | 2.0       |          |          | nd        |          |          |         |
| 4-Bromophenylphenylether     | 2.0       | nd       |          |           |          |          |         |
| Hexachlorobenzene            | 2.0       | nd       |          | nd        |          |          |         |
| Pentachlorophenol            | 10.0      | nd       |          | nd        |          |          |         |
| Phenanthrene                 | - 0.2     | nd       |          | nd        |          |          |         |
| Anthracene                   | 0.2       | nd       |          | nd        |          |          |         |
| Carbazole                    | 2.0       | nd       |          | nd        |          |          |         |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd        |          | 1        |         |
| Fluoranthene                 | 0.2       | nd       | 125%     | nd        |          |          |         |
| Pyrene                       | 0.2       | nđ       |          | nd        | 78%      | 79%      | 1%      |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd        |          |          |         |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd        |          |          | •       |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd        |          |          |         |
| Chrysene                     | 0.2       | nd       | ·        | nd        |          |          |         |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd        |          |          |         |
| Di-n-octyl phthalate         | 2.0       | nd       | 78%      | nd        | •        |          |         |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd        |          |          |         |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd        |          |          |         |
| Benzo(a)pyrene               | 0.2       | nđ       | 73%      | . nd      |          |          |         |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd        |          |          |         |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd        |          |          |         |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd        |          | 4        |         |
|                              |           | ,        |          |           | ,        |          | ***     |
| Surrogate recoveries         |           | OFO      | 4400/    | Ango.     | 84%      | 83%      |         |
| 2-Fluorophenol               | •         | 85%      | 110%     | 126%      |          | 86%      |         |
| Phenol-d6                    |           | 103%     | 115%     | 133%      | 88%      |          |         |
| Nitrobenzene-d5              |           | 126%     | 134%     | 87%       | 86%      | 83%      |         |
| 2-Fluorobiphenyl             |           | 86%      | 126%     | 91%       | 89%      | 87%      |         |
| 2,4,6-Tribromophenol         |           | 63%      | 41%      | 52%       | 50%      | 52%      |         |
| 4-Terphenyl-d14              |           | 76%      | 124%     | 79%       | 75%      | 73%      |         |

# Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

ESN Environment

Olympia: (360) 459-4670 Bellevue: (360) 957-9872

# CHAIN-OF-CUSTODY RECORD

| PAGE / OF /                                       | Loke Rehab                         | Stevens Co , tota                    | COLLECTION C/10/20           | NOTES                                   |               | Sum: Vir 5270 |   | lette.    | 3 Crachetor |  |  |    |    |     |     |     |     |     |     | LABORATORY NOTES:                   |                            |                                       |                     |                              | Turn Around Time: 24 HR 48 HR 5 DAY     |
|---------------------------------------------------|------------------------------------|--------------------------------------|------------------------------|-----------------------------------------|---------------|---------------|---|-----------|-------------|--|--|----|----|-----|-----|-----|-----|-----|-----|-------------------------------------|----------------------------|---------------------------------------|---------------------|------------------------------|-----------------------------------------|
| DATE: 10/0/2003                                   | PROJECT NAME: Hotch Loke Rehat     | LOCATION: Thit & Cite. 1 Sty very Go | COLLECTOR: In Antersa        |                                         |               |               |   |           |             |  |  |    |    |     |     |     |     |     |     | SAMPLE RECEIPT                      | TOTAL NUMBER OF CONTAINERS | CHAIN OF CUSTODY SEALS YAWNA          | SEALS INTACT? YANNA | RECEIVED GOOD COND,/COLD     | NOTES:                                  |
| as + William (WINFW)                              | Source Wile, Loss 99240            | FAX: (Cii) 924-244/                  | PROJECT MANAGER: Bill Baller | / * * * * * * * * * * * * * * * * * * * | ×             | ×             | × | メー・メー・メー・ | - X         |  |  |    |    |     |     |     |     |     |     | RECEMPED AY (S/gnaturb) DATE/TIME   | 0 3 0 K                    | 3Y (Signaltare) DATE/TIME             |                     |                              | Pickup                                  |
| CLIENT, Misch restances of Post + William (WINTW) | ADDRESS: 275 11. 15 Severy Place S | PHONE (500) 872-1001                 |                              | Sample Number Depth Time Type Conta     | Survey Olives |               |   |           |             |  |  | 01 | 12 | 13. | 14. | 15. | 16. | 17. | 18. | RELINDUISHED BY Signature DATE/TIME | K                          | RELINQUISHED BY (Signature) DATE/TIME |                     | SAMPLE DISPOSAL INSTRUCTIONS | ☐ ESN DISPOSAL @ \$2.00 each ☐ Return ☐ |

WA Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| Analytical Results                              |            |          | 4000 Mars 2000 2000 2000 2000 2000 2000 2000 20 |            |                                         |          |       |
|-------------------------------------------------|------------|----------|-------------------------------------------------|------------|-----------------------------------------|----------|-------|
| 8260, µg/L (Water)                              | Reporting  | MTH BLK  | LCS                                             | Hatch Lake | MS                                      | MSD      | RPD   |
| Date analyzed                                   | Limits     | 12/18/08 | 12/18/08                                        | 12/18/08   | 12/18/08                                | 12/18/08 |       |
| Dichlorodifluoromethane                         | 1.0        | m at     | 1                                               |            |                                         |          |       |
| Chloromethane                                   | 1.0        | nd       |                                                 | nd         | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |          | •     |
| Vinyl chloride                                  | 0.2        | nd       |                                                 | nd         |                                         |          |       |
| Bromomethane                                    | 1.0        | nd<br>nd |                                                 | nd         | T.                                      |          |       |
| Chloroethane                                    | 1.0        |          |                                                 | nd         |                                         |          | •     |
| Trichlorofluoromethane                          | 1.0        | nd<br>nd |                                                 | nd         |                                         |          |       |
| Acetone                                         | 10.0       | nd       | •                                               | nd         |                                         |          |       |
| 1,1-Dichloroethene                              | 1.0        | nd-      | 124%                                            | . nd       | 124%                                    | 4000/    | 0.007 |
| Methylene chloride                              | 1.0        | nd       | 12470                                           | · nd       | 124%                                    | 123%     | 0.8%  |
| Methyl-t-butyl ether (MTBE)                     | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| trans-1,2-Dichloroethene                        | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| 1,1-Dichloroethane                              | 1.0        | nd       |                                                 | nd<br>nd   |                                         |          |       |
| 2-Butanone (MEK)                                | 10.0       | nd       |                                                 |            |                                         |          |       |
| cis-1,2-Dichloroethene                          | 1.0        | nd       |                                                 | nd<br>nd   |                                         |          | *     |
| 2,2-Dichloropropane                             | 1.0        | nd       |                                                 | nd         | :                                       |          |       |
| Chloroform                                      | 1.0        | nd       |                                                 | nd<br>nd   |                                         |          |       |
| Bromochloromethane                              | 1.0        | nd i     |                                                 |            |                                         |          |       |
| 1,1,1-Trichloroethane                           | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| 1,2-Dichloroethane (EDC)                        | 1.0        |          |                                                 | nd         |                                         |          |       |
| 1,1-Dichloropropene                             | 1.0        | nd<br>nd |                                                 | nd         |                                         |          |       |
| Carbon tetrachloride                            | 1.0        | nd<br>nd |                                                 | nd         | •                                       |          |       |
| Benzene                                         | 1.0        | nd       | 101%                                            | nd         | 4000/                                   | 4000/    | 0.00/ |
| Trichloroethene (TCE)                           | 1.0        | nd<br>nd | 93%                                             | nd         | 100%                                    | 100%     | 0.0%  |
| 1,2-Dichloropropane                             | 1.0        | nd nd    | 93%                                             | nd         | 93%                                     | 93%      | 0.0%  |
| Dibromomethane                                  | 1.0        |          |                                                 | nd         | \ .                                     |          |       |
| Bromodichloromethane                            | 1.0<br>1.0 | nd       |                                                 | nd         |                                         |          |       |
|                                                 |            | nd       |                                                 | nd         |                                         |          |       |
| 4-Methyl-2-pentanone (MIBK)                     | 1.0        | nd       |                                                 | nd<br>     |                                         |          |       |
| cis-1,3-Dichloropropene Toluene                 | 1.0<br>1.0 | nd       | 116%                                            | nd<br>     | 44007                                   | 4400/    | 0.007 |
|                                                 |            | nd       | 110%                                            | nd         | 116%                                    | 116%     | 0.0%  |
| trans-1,3-Dichloropropene 1,1,2-Trichloroethane | 1.0<br>1.0 | nd       |                                                 | nd         |                                         |          |       |
| 2-Hexanone                                      | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| 1,3-Dichloropropane                             | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| Dibromochloromethane                            | 1.0        | nd<br>nd |                                                 | nd         |                                         |          |       |
| Tetrachloroethene (PCE)                         | 1.0        | nd nd    |                                                 | nd         |                                         |          |       |
| 1,2-Dibromoethane (EDB)                         | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| Chlorobenzene                                   | 1.0        |          | 123%                                            | nd         | 1050/                                   | 4000/    | 4.407 |
| 1,1,1,2-Tetrachloroethane                       | 1.0        | nd       | 12370                                           | nd         | 125%                                    | 120%     | 4.1%  |
| Ethylbenzene                                    | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| Xylenes                                         | 3.0        | nd       |                                                 | nd         |                                         |          |       |
| Styrene                                         | 1.0        | .nd      |                                                 | nd         |                                         |          |       |
| Bromoform                                       | 1.0        | nd<br>nd |                                                 | . nd       |                                         |          |       |
|                                                 |            |          |                                                 | nd         |                                         |          |       |
| 1,1,2,2-Tetrachloroethane                       | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| Isopropylbenzene<br>1,2,3-Trichloropropane      | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| T,2,3-Trichioropropane<br>Bromobenzene          | 1.0        | nd       |                                                 | nd         |                                         |          |       |
|                                                 | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| n-Propylbenzene                                 | 1.0        | nd       |                                                 | nd         | •                                       |          |       |
| 2-Chlorotoluene                                 | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| 4-Chlorotoluene                                 | 1.0        | . nd     |                                                 | nd         |                                         |          |       |
| 1,3,5-Trimethylbenzene                          | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| tert-Butylbenzene                               | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| 1,2,4-Trimethylbenzene                          | 1.0        | nd<br>   |                                                 | nd         |                                         |          |       |
| sec-Butylbenzene                                | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| 1,3-Dichlorobenzene                             | 1.0        | nd       |                                                 | nd         |                                         | •        |       |
| 1,4-Dichlorobenzene                             | 1.0        | nd       |                                                 | nd         |                                         |          |       |
| Isopropyltoluene                                | 1.0        | nd       | •                                               | nd         |                                         |          |       |

WA Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

**Analytical Results** 

| 8260, μg/L (Water)          | Reporting | MTH BLK  | LCS      | Hatch Lake | MS       | MSD      | RPD |
|-----------------------------|-----------|----------|----------|------------|----------|----------|-----|
| Date analyzed               | Limits    | 12/18/08 | 12/18/08 | 12/18/08   | 12/18/08 | 12/18/08 |     |
| 1,2-Dichlorobenzene         | 1.0       | nd       |          | · nd       |          |          |     |
| n-Butylbenzene              | 1.0       | nd       |          | nd         |          | •        |     |
| 1,2-Dibromo-3-Chloropropane | 1.0       | nd       |          | nd         |          |          |     |
| 1,2,4-Trichlorobenzene      | . 1.0     | nd       |          | nd         |          |          |     |
| Naphthalene                 | 1.0       | nd       | •        | nd         |          |          |     |
| Hexachloro-1,3-butadiene    | 1.0       | . nd     |          | nd         |          |          |     |
| 1,2,3-Trichlorobenzene      | 1.0       | nd       | ····     | nd         |          |          |     |
| Surrogate recoveries        |           |          |          |            |          |          | f   |
| Dibromofluoromethane        |           | 88%      | 85%      | 110%       | 101%     | 98%      |     |
| Toluene-d8                  |           | 104%     | 107%     | 107%       | 121%     | 118%     |     |
| 4-Bromofluorobenzene        |           | .103%    | 107%     | 112%       | 114%     | 114%     |     |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

WA Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| 8270, μg/L                    |           | MTH BLK  | LCS      | HatchLake | MS       | MSD      | RPD                                     |
|-------------------------------|-----------|----------|----------|-----------|----------|----------|-----------------------------------------|
| Matrix                        | Water     | Water    | · Water  | Water     | Water    | Water    |                                         |
| Date extracted                | Reporting | 12/17/08 | 12/17/08 | 12/17/08  | 12/17/08 | 12/17/08 |                                         |
| Date analyzed                 | Limits    | 12/17/08 | 12/17/08 | 12/17/08  | 12/17/08 | 12/17/08 |                                         |
| Dividina                      |           |          |          |           |          |          | *************************************** |
| Pyridine                      | 2.0       | nd       |          | nd        |          | •        |                                         |
| Aniline                       | 2.0       | nd       |          | nd        |          |          |                                         |
| Phenol                        | 2.0       | nd       |          | nd        | 94%      | 93%      | 1%                                      |
| 2-Chlorophenol                | 2.0       | nd       |          | nd        | 115%     | 111%     | 4%                                      |
| Bis (2-chloroethyl) ether     | 2.0       | nd       |          | nd        |          |          |                                         |
| 1,3-Dichlorobenzene           | 2.0       | nd       |          | nd        |          |          |                                         |
| 1,4-Dichlorobenzene           | 2.0       | nd       | 103%     | nd        | 101%     | 102%     | 1%                                      |
| 1,2-Dichlorobenzene           | 2.0       | nd       |          | nd        |          |          |                                         |
| N-methylpyrrolidone           | 2.0       | nd       | •        | nd        |          |          |                                         |
| Benzyl alcohol                | 2.0       | nd       |          | , nd      |          |          |                                         |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |          | nd        | •        |          |                                         |
| Bis (2-chloroisopropyl) ether | 10.0      | nd       |          | nd        |          |          |                                         |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd       |          | nd        |          |          |                                         |
| Hexacholorethane              | 2.0       | nd       |          | nd        |          |          |                                         |
| N-Nitroso-di-n-propylamine    | 2.0       | nd .     |          | nd        | 123%     | 122%     | 1%                                      |
| Nitrobenzene                  | 2.0       | nd       |          | nd        |          |          |                                         |
| Isophorone ·                  | 2.0       | nd       |          | nd        |          |          |                                         |
| 2-Nitrophenol                 | 10.0      | nd       |          | . nd      |          |          |                                         |
| 4-Nitrophenol                 | 10.0      | nd       |          | nd        |          |          |                                         |
| 2,4-Dimethylphenol            | 2.0       | nd       |          | nd        | 107%     | 107%     | 0%                                      |
| Bis (2-chloroethoxy) methane  | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,4-Dichlorophenol            | 10.0      | nd       |          | nd        |          |          |                                         |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | nd        | 116%     | 118%     | 2%                                      |
| Naphthalene                   | 2.0       | nd       |          | nd        |          |          | . —                                     |
| 4-Chloroaniline               | 10.0      | nd       |          | nd        |          |          |                                         |
| Hexachlorobutadiene           | 2.0       | nd       | 123%     | nd        |          |          |                                         |
| 4-Chloro-3-methylphenol       | 10.0      | nd       |          | nd        | 81%      | 81%      | 0%                                      |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd        | .,,      | 0.70     | 070                                     |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd        |          |          |                                         |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd        | •        |          |                                         |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd        | •        |          |                                         |
| 2-Chloronaphthalene           | 2.0       | nd       |          | nd        |          |          |                                         |
| 2-Nitroaniline                | 10.0      | nd       |          | nd        |          |          |                                         |
| 1,4-Dinitrobenzene            | 10.0      | nd       | •        | nd        |          |          |                                         |
| Dimethylphthalate             | 2.0       | nd       |          | nd .      |          |          |                                         |
| Acenaphthylene                | 0.2       | nd       |          | nd        |          |          |                                         |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          |           |          |          |                                         |
| 2,6-Dinitrotoluene            | 2.0       | •        |          | nd        |          |          |                                         |
| 1,2-Dinitrobenzene            | 2.0       | na<br>nd |          | nd        |          |          |                                         |
| Acenaphthene                  | 0.2       |          | 131%     | nd .      | 000/     | Ó70/     | 401                                     |
| 3-Nitroaniline                |           | nd       | 13176    | nd        | 98%      | 97%      | 1%                                      |
| Dibenzofuran                  | 10.0      | nd<br>nd |          | nd        |          |          |                                         |
|                               | 2.0       | nd       |          | nd        | 0001     | 0770     |                                         |
| 2,4-Dinitrotoluene            | 2.0       | nd<br>   |          | nd        | 88%      | 87%      | 1%                                      |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd       |          | nd        |          |          |                                         |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd<br>   |          | nd        |          |          |                                         |
| 2,4-Dinitrophenol             | 10.0      | nd       | ٠        | nd        |          |          |                                         |
| Fluorene                      | 0.2       | nd       |          | nd        | •        |          |                                         |

WA Dept. of Fish & Wildlife HATCH LAKE REHAB PROJECT Stevens Co., Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| 8270, µg/L                   |           | MTH BLK  | LCS         | HatchLake  | MS       | MSD      | RPD |
|------------------------------|-----------|----------|-------------|------------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water       | Water      | Water    | Water    |     |
| Date extracted               | Reporting | 12/17/08 | 12/17/08    | 12/17/08   | 12/17/08 | 12/17/08 |     |
| Date analyzed                | Limits    | 12/17/08 | 12/17/08    | 12/17/08   | 12/17/08 | 12/17/08 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |             | nd         |          |          |     |
| Diethylphthalate             | 2.0       | nd       |             | nd         |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |             | nd -       |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |             | nd         |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 125%        | nd         |          |          |     |
| Azobenzene                   | 2.0       | nd       |             | nd         |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |             | nd         |          |          | * . |
| Hexachlorobenzene            | 2.0       | nd       |             | nd         |          |          |     |
| Pentachlorophenol            | 10.0      | nd       |             | nd         |          |          |     |
| Phenanthrene                 | 0.2       | nd       | 4 8         | nd         |          |          |     |
| Anthracene                   | 0.2       | nd       |             | nd         |          |          |     |
| Carbazole                    | 2.0       | nd       |             | nd         |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |             | nd         |          |          |     |
| Fluoranthene                 | 0.2       | nd       | 127%        | nd         |          |          |     |
| Pyrene                       | 0.2       | . nd     | ,0          | nd-        | 89%      | 86%      | 3%  |
| Butylbenzylphthalate         | 2.0       | nd       |             | nd         | 0070     | 00,70    | 370 |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |             | nd         |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |             | nd         |          |          |     |
| Chrysene                     | 0.2       | nd       |             | nd         | •        |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |             | nd         |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 86%         | nd         |          |          |     |
| Benzo(b)fluoranthene         | 0.2       | nd       | 0070        | nd         |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |             | nd         |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 82%         | nd         |          |          |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       | 0270        | nd         |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |             | nd         |          |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |             | · nd       |          |          |     |
| Surrogate recoveries         |           |          |             | ·          |          |          |     |
| 2-Fluorophenol               |           | 92%      | 112%        | 117%       | 000/     | 040/     |     |
| Phenol-d6                    | •         | 95%      | 125%        |            | 89%      | 91%      |     |
| Nitrobenzene-d5              |           | 111%     | 125%        | 72%<br>78% | 96%      | 99%      |     |
| 2-Fluorobiphenyl             |           | 86%      | 125%        |            | 92%      | 93%      |     |
| 2,4,6-Tribromophenol         |           | 63%      |             | 94%        | 81%      | 84%      |     |
| 4-Terphenyl-d14              |           | 85%      | 127%<br>82% | 60%        | 78%      | 78%      |     |
| TIOIPHONE                    | -         | 0070     | 0270        | 81%        | 79%      | 78%      |     |

#### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits:

2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

Washington Dept. of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com (360) 459-3432

| Analytical Results<br>8260, µg/L (Water) |                     | WITH BLK        | LCS.it   | lle Hatch Lake | MS           | MSD         | RPD   |
|------------------------------------------|---------------------|-----------------|----------|----------------|--------------|-------------|-------|
| Date analyzed                            | Reporting<br>Limits | 10/15/08        | 10/15/08 | 10/15/08 1     | 0/15/08      | 10/15/08    |       |
| Dichlorodifluoromethane                  | 1.0                 | nd              |          | nd             |              |             |       |
| Chloromethane                            | 1.0                 | nd              |          | nd             |              |             |       |
| Vinyl chloride                           | 0.2                 | nd              |          | nd             |              |             |       |
| Bromomelhane                             | 1,0                 | nd              |          | nd             |              |             |       |
| Chloroethane                             | 1.0                 | nd <sup>.</sup> |          | nd             |              |             |       |
| Trichlorofluoromethane                   | 1.0                 | nd              | •        | nd             |              |             |       |
| 1,1-Dichloroethene                       | 1.0                 | nd              | 78%      | nd             | 89%          | 78%         | 13%   |
| Methylene chloride                       | 1.0                 | nd              |          | nd             |              |             |       |
| trans-1,2-Dichloroethene                 | 1.0                 | nd              |          | nd             |              |             |       |
| 1,1-Dichloroethane                       | 1.0                 | · nd            |          | nd             |              |             |       |
| cis-1,2-Dichloroethene                   | 1.0                 | nd              |          | nd<br>nd       |              |             |       |
| 2,2-Dichloropropane                      | 1.0<br>1.0          | . nd<br>nd      |          | nd             |              |             |       |
| Chloroform<br>Bromochloromethane         | 1.0                 | nd              |          | nd<br>bn       |              |             |       |
| 1,1,1-Trichloroethane                    | 1.0                 | nd              | -        | nd             |              |             |       |
| 1,2-Dichloroethane                       | 1.0                 | nd              |          | nd             |              |             |       |
| 1,1-Dichloropropene                      | 1.0                 | ton<br>ton      |          | . nd           |              |             |       |
| Carbon tetrachloride                     | 1.0                 | nd              |          | nd             |              |             |       |
| Benzene                                  | 1.0                 | nd              | 93%      | nd             | 100%         | 90%         | 11%   |
| Trichloroethene                          | 1.0                 | nd              | 92%      | nd             | 104%         | 91%         | 13%   |
| 1,2-Dichloropropane                      | 1.0                 | nd              |          | , nd           |              |             |       |
| Dibromomethane                           | 1.0                 | nd              |          | nd             |              |             |       |
| Bromodichloromethane                     | 1.0                 | nd              |          | nd ·           |              |             |       |
| cis-1,3-Dichloropropene                  | 1.0                 | nd              |          | nd             |              |             |       |
| Toluene                                  | 1.0                 | nd              | 86%      | nd             | 102%         | 83%         | 21%   |
| trans-1,3-Dichloropropene                | 1.0                 | nd              |          | nd             |              |             |       |
| 1,1,2-Trichloroethane                    | 1,0                 | nd              |          | nd             |              |             |       |
| 1,3-Dichloropropane                      | 1.0                 | nd              |          | nd             |              |             |       |
| Dibromochloromethane                     | 1.0                 | nd              |          | nd             |              |             |       |
| Tetrachloroethene                        | 1.0                 | nd              |          | nd             | •            |             |       |
| 1,2-Dibromoethane (EDB)                  | 1.0                 | nd              |          | nd             |              | 2001        | 47704 |
| Chlorobenzene                            | 1,0                 | nd              | 96%      | bn<br>         | 106%         | 89%         | 17%   |
| 1,1,1,2-Tetrachloroethane                | 1.0                 | nd              |          | nd             |              |             |       |
| Elhylbenzene                             | 1.0<br>1.0          | nd<br>nd        |          | nd<br>nd       |              |             |       |
| Xylenes                                  | 1.0                 | nd              | •        | nd             |              |             |       |
| Slyrene<br>Bromoform                     | 1.0                 | , nd            |          | nd             |              |             |       |
| 1,1,2,2-Tetrachloroethane                | 1.0                 | nd              |          | nd             |              |             |       |
| Isopropylbenzene                         | 1.0                 | nd              |          | . nd           |              |             |       |
| 1,2,3-Trichloropropane                   | 1.0                 | nd              |          | nd -           |              |             |       |
| Bromobenzene                             | 1.0                 | nd              |          | nd             |              |             |       |
| n-Propylbenzene                          | 1.0                 | nd              |          | nd             |              |             | •     |
| 2-Chlorotoluene                          | 1.0                 | nd              |          | nd             |              |             |       |
| 4-Chlorotoluene                          | 1.0                 | nd              |          | nd             |              |             |       |
| 1,3,5-Trimelhylbenzene                   | 1.0                 | nd              |          | nd             |              |             |       |
| tert-Butylbenzene                        | 1.0                 | nd              |          | nd             |              |             |       |
| 1,2,4-Trimethylbenzene                   | 1.0                 | . nd            |          | nd             |              |             |       |
| sec-Butylbenzene                         | 1.0                 | nd              |          | nd             |              |             |       |
| 1,3-Dichlorobenzene                      | 1.0                 | ' nd            |          | nd             |              |             |       |
| 1,4-Dichlorobenzene                      | 1.0                 | nd              |          | nd             |              |             |       |
| Isopropyltoluene                         | 1.0                 | na              |          | nd             |              |             |       |
| 1,2-Dichlorobenzene                      | 1.0                 | nd              |          | nd             |              |             |       |
| n-Butylbenzene                           | 1.0                 | nd              |          | nd             |              |             |       |
| 1,2-Dibromo-3-Chloropropar               | 1.0                 | nd              |          | nd             |              |             |       |
| 1,2,4-Trichlorobenzene                   | 1.0                 | nd              |          | nd             |              |             |       |
| Naphthalene                              | 1.0                 | nd              |          | nd             |              |             |       |
| Hexachloro-1,3-butadiene                 | 1.0                 | nd<br>nd        |          | nd<br>nd       |              |             |       |
| 1,2,3-Trichlorobenzene                   | 1.0                 | nd nd           |          | nd             |              |             |       |
| Surrogate recoveries                     |                     |                 |          |                |              |             |       |
| Dibromofluoromethane                     |                     | 92%             | 90%      | 93%            | 92%          | 94%         |       |
| Toluene-d8                               |                     | 97%             | 99%      | 97%<br>103%    | 101%<br>117% | 98%<br>105% |       |
| 4-Bromofluorobenzene                     |                     | 102%            | 104%     | 103%           | 11770        | 10070       |       |

Data Qualifiers and Analytical Comments ind - not detected at listed reporting limits. Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

### Washington Dept. of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

| Water Reporting Limits  2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.     | Water 19/13/08 10/13/08  nd nd nd nd nd nd nd nd nd nd nd nd nd                       | Water<br>10/13/08<br>10/13/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water<br>10/13/08<br>10/13/08<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Water<br>10/13/08<br>10/13/08<br>81%<br>106%<br>102% | Water: 10/13/08 10/13/08 85% 110% | 5%<br>4%<br>2% |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|----------------|
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd nd nd nd nd nd nd nd nd nd nd nd nd n                                              | 10/13/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/13/08<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81%<br>106%                                          | 85%<br>110%                       | 4%             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81%<br>106%                                          | 85%<br>110%                       | 4%             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                          | 124%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106%                                                 | 110%                              | 4%             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                          | 124%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106%                                                 | 110%                              | 4%             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                          | 124%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106%                                                 | 110%                              | 4%             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                | 124%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106%                                                 | 110%                              | 4%             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                | 124%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                   |                |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>10.0<br>2.0              | nd<br>nd<br>nd<br>nd<br>nd<br>nd                                                      | 124%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102%                                                 | 100%                              | 29             |
| 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>10.0<br>2.0<br>2.0              | nd<br>nd<br>nd<br>nd<br>nd                                                            | <b>124%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102%                                                 | 100%                              | 29             |
| 2.0<br>2.0<br>2.0<br>2.0<br>10.0<br>2.0<br>2.0                     | nd<br>nd<br>nd<br>nd<br>nd                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0272                                                |                                   |                |
| 2.0<br>2.0<br>2.0<br>10.0<br>2.0<br>2.0                            | nd<br>nd<br>nd<br>nd                                                                  | . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                   |                |
| 2.0<br>2.0<br>10.0<br>2.0<br>2.0                                   | nd<br>nd<br>nd                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 2.0<br>10.0<br>2.0<br>2.0                                          | nd<br>nd                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
| 10.0<br>2.0<br>2.0                                                 | nd                                                                                    | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · IIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                   |                |
| 2.0<br>2.0                                                         |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 2.0                                                                | no                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
|                                                                    | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4000/                                                | 100%                              | 19             |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100%                                                 | 109%                              | 17             |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82%                                                  | 84%                               | 2              |
| 2.0                                                                | .nd                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
| 10.0                                                               | nd.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | * 4                               | _              |
| 2.0                                                                | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124%                                                 | 120%                              | 3              |
| 2.0                                                                | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 10.0                                                               | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 2.0                                                                | nd                                                                                    | 126%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 10.0                                                               | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66%                                                  | 66%                               | 0,             |
| 2.0                                                                | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 2.0                                                                | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
| 2.0                                                                | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                   |                |
| 10.0                                                               | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
|                                                                    | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
|                                                                    | nd                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
|                                                                    |                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   | . :            |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                   | •              |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | *                                 |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       | 121%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115%                                                 | 117%                              | 2              |
|                                                                    |                                                                                       | 10,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,070                                                | ,                                 |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40%                                                | QR%                               | 4              |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J+70                                                 | 30 /0                             | - 7            |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
| 4                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                   |                |
|                                                                    | 2.0<br>2.0<br>10.0<br>10.0<br>2.0<br>2.0<br>10.0<br>2.0<br>10.0<br>2.0<br>10.0<br>2.0 | 2.0 nd 2.0 nd 10.0 nd 10.0 nd 2.0 nd | 2.0 nd 2.0 nd 2.0 nd 10.0 nd 10.0 nd 10.0 nd 2.0 nd 2.0 nd 10.0 nd 2.0 nd 2.0 nd 2.0 nd 2.0 nd 2.0 nd 2.0 nd 10.0 nd 2.0 nd 2.0 nd 10.0 nd 2.0 nd 2.0 nd 2.0 nd 2.0 nd 2.0 nd 10.0 nd 2.0 nd 2.0 nd 10.0 nd 2.0 nd | 2.0                                                  | 2.0                               | 2.0            |

Washington Dept. of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

| 8270, µg/L                   |           | MTH BLK  | LCSLi    | ttle Hatch | MS                                      | MSD      | RPD |
|------------------------------|-----------|----------|----------|------------|-----------------------------------------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water      | Water                                   | Water    |     |
| Date extracted               | Reporting | 10/13/08 | 10/13/08 | 10/13/08   | 10/13/08                                | 10/13/08 |     |
| Date analyzed                | Limits    | 10/13/08 | 10/13/08 | 10/13/08   | 10/13/08                                | 10/13/08 |     |
|                              |           | ****     |          |            |                                         |          |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd         |                                         |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd         |                                         | ,        |     |
| 4-Nitroanliine               | 10.0      | nd       |          | nd         |                                         |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd         |                                         |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 83%      | nd         |                                         |          |     |
| Azobenzene                   | 2.0       | nd       |          | nd         |                                         |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd         |                                         |          |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd         |                                         |          |     |
| Pentachlorophenol            | 10.0      | nd       |          | nd         |                                         |          |     |
| Phenanthrene                 | 0.2       | nd       |          | nd         |                                         |          |     |
| Anthracene                   | 0.2       | nd       |          | nd         |                                         |          |     |
| Carbazole                    | 2.0       | nd       |          | nd         |                                         |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd         |                                         |          |     |
| Fluoranthene                 | 0.2       | nd       | 126%     | nd         | •                                       |          |     |
| Pyrene                       | 0.2       | nd       | •        | nd         | 78%                                     | 79%      | 1%  |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd         |                                         | •        |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd         |                                         |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | - nd       |                                         |          |     |
| Chrysene                     | 0.2       | - nd     |          | nd         |                                         | . 1      |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd         |                                         |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 96%      | nd         |                                         |          |     |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd         |                                         |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd         |                                         |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 80%      | nd         |                                         |          |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd -       |                                         |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd         |                                         |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd         |                                         |          |     |
|                              |           | <u></u>  |          |            | *************************************** |          |     |
| Surrogate recoverles         |           |          |          |            |                                         | ,        |     |
| 2-Fluorophenol               |           | 80%      | 115%     | 131%       | 84%                                     | 83%      |     |
| Phenol-d6                    |           | 96%      | 105%     | 111%       | 88%                                     | 86%      |     |
| Nitrobenzene-d5              |           | 118%     | 124%     | 101%       | 86%                                     | 83%      |     |
| 2-Fluorobiphenyl             |           | 91%      | 134%     | 101%       | 89%                                     | 87%      |     |
| 2,4,6-Tribromophenol         |           | 69%      | 91%      | 66%        | 50%                                     | 52%      |     |
| 4-Terphenyl-d14              |           | 79%      | 130%     | 83%        | 75%                                     | 73%      |     |

#### **Data Qualifiers and Analytical Comments**

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

ESN Environmental

npia: (360) 459-4670 evue: (360) 957-9872

# CHAIN-OF-CUSTODY RECORD

| 1                                                        | .                                                     | 1                                          | B.                   | Laboratory<br>Note Mumber                 |                 |     |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          |                             |                            |                              |                    |                              | 5 DAY             |
|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|----------------------|-------------------------------------------|-----------------|-----|-----------|----------|-----|----|---------------|--------------|----------|-----------|-----|----------|-------------|-----|----------|----------|----------|----------|-----------------------------|----------------------------|------------------------------|--------------------|------------------------------|-------------------|
|                                                          |                                                       | _ [                                        | COLLECTION 19/09/07  | Total Number snanistings to               |                 |     |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          |                             |                            |                              |                    |                              |                   |
|                                                          |                                                       | LOCATION: Little Hetel Lote Steines G., WA | NOI                  |                                           | 3               | 2.7 | ş         |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          |                             |                            |                              |                    |                              | 48 HR             |
| 9-<br>-                                                  | 3                                                     |                                            | ATE OF               |                                           | 1 . 1           |     | Purlobene |          |     |    |               |              |          |           |     |          |             |     |          |          |          | •        |                             |                            |                              |                    |                              | 24 HR             |
| Ĭ                                                        | 3                                                     | 0                                          | a 0                  | Jan 1988                                  | 7.1             |     | OWIT      |          |     |    |               |              |          |           |     |          |             |     | -        |          |          |          | TES:                        |                            |                              |                    |                              | . 1.              |
|                                                          | PROJECT NAME: Little Hitsi Lork Rehuls                | itas                                       |                      | ES                                        | 100-5 San : 130 |     | اران      | ,        |     |    |               |              |          |           |     |          |             |     |          |          |          |          | LABORATORY NOTES:           |                            |                              |                    |                              | Turn Around Time: |
| 1                                                        | 1                                                     | 12                                         |                      | NOTES                                     | S               |     | nethyl    |          | *** |    |               |              |          |           |     |          |             |     |          |          |          |          | MATO                        |                            |                              |                    |                              | Monuc             |
| PAGE                                                     | 5                                                     | W.                                         |                      |                                           | Ľ               |     |           |          |     |    |               |              |          |           | 1 6 |          |             |     |          | _        |          |          | ABO                         |                            |                              |                    |                              | Tum A             |
| 4                                                        | 11.3                                                  | 1                                          |                      |                                           | _               |     |           |          |     |    | _             | ļ            | _        |           |     |          |             |     |          |          | $\dashv$ |          | 1                           |                            | T                            | T                  | T                            |                   |
|                                                          | 1                                                     | 47                                         | 18                   |                                           | -               |     |           |          |     |    |               |              | _        |           |     |          |             | -   | $\dashv$ | $\dashv$ | -        | -        |                             |                            | $\dashv$                     | 7                  |                              |                   |
|                                                          | 12                                                    | the string                                 | M                    | 9175 OH                                   | -               |     |           |          |     |    | <del> -</del> | <del> </del> | -        | i i i i i |     |          |             | 1   | _        | 1        | 7        |          |                             | (0)                        | ≨                            |                    | ŀ                            |                   |
| 1200                                                     | Щ                                                     | the                                        | RA                   | 100 30 30 30 30 30 30 30 30 30 30 30 30 3 |                 |     |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          | -                           | NER                        | X                            |                    | 9                            |                   |
| DATE: 10/09/2008                                         | NAN                                                   | 7                                          | ά,                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     |                 |     |           |          |     |    | _             |              |          |           |     |          |             |     | _        | _        | 4        | _        | ECEN                        | PATA                       | EALS                         | •                  | 0,0                          |                   |
| 10/                                                      | S                                                     | Ņ.                                         | COLLECTOR: BILL BURN | 100 100 100 100 100 100 100 100 100 100   |                 |     |           |          |     |    | <u> </u>      |              |          |           |     |          |             |     | -        |          | -        | $\dashv$ | SAMPLE RECEIPT              | TOTAL NUMBER OF CONTAINERS | CHAIN OF CUSTODY SEALS YMINA | SEALS INTACT? YMMA | RECEIVED GOOD COND./COLD     |                   |
| E                                                        | O                                                     | S                                          | Ë                    |                                           | -               |     |           |          |     |    |               | _            | <u> </u> |           |     |          |             | ┰   | $\dashv$ | $\dashv$ | 1        | ㅓ        | SAR                         | BER                        | XSX.                         | CLS                | 000                          |                   |
| ďΩ                                                       | <u> </u>                                              | 2                                          | 8                    |                                           |                 |     |           |          |     |    |               |              | <u> </u> |           |     |          |             |     |          |          |          |          |                             | Z.                         | P.                           | SINT               | MED                          | ij                |
| 1                                                        | -                                                     |                                            |                      | 1 / 160/6                                 |                 |     |           |          |     |    | 7             |              |          |           |     |          | :<br>:<br>: |     |          |          |          |          |                             | TO TA                      | 3                            | SEAL               | ECE                          | NOTES:            |
|                                                          |                                                       |                                            |                      | 1 18 18 18 18                             |                 |     |           |          |     |    |               | _            | _        |           |     | A        |             | _   |          | _        |          | -        | ш                           |                            | Г                            |                    | T                            | Ħ                 |
| 17                                                       | 137                                                   | 111                                        | MANAGER: Fill Ede    |                                           |                 |     |           |          | •   |    | ļ             | _            |          |           |     |          |             |     | $\dashv$ | $\dashv$ | -        |          | DATE/TIME                   |                            | DATE/TIME                    |                    |                              |                   |
| 3                                                        | 买                                                     | 1445-458 (MA)                              | 11/2                 |                                           |                 |     |           |          |     |    | _             | <del> </del> |          |           |     |          |             | -   |          | $\dashv$ | 1        | ㅓ        | M                           | ¥                          | Z                            |                    |                              |                   |
| 1                                                        | \$                                                    | 1                                          | المما                |                                           |                 |     |           | <br>     |     |    |               |              |          |           |     |          |             |     |          |          |          |          |                             | <u>ت</u><br>ص              |                              |                    | 1                            |                   |
| 12)                                                      | 7                                                     | 95                                         | GE                   |                                           |                 |     |           |          |     |    |               |              |          |           |     |          |             |     | 4        | _        | _        | _        | abure                       | 0                          | alure                        |                    |                              | Pickup            |
| 11.                                                      | 13                                                    | 8                                          | ANA                  | 186 686                                   | X               |     |           |          |     | -  | ļ             |              |          |           |     |          |             |     |          | -        | $\dashv$ |          | OS)                         | 4                          | कुँड)                        |                    |                              | 1 1               |
| El,                                                      | 4                                                     | di                                         | } ∑<br>⊢             |                                           | -               |     |           |          |     |    | -             | -            |          |           |     |          |             | -   |          | 1        | 1        | $\neg$   | O BY                        | 3                          | 0.0                          | ٠.                 | NO                           | um [              |
| <i>b</i>                                                 | 7                                                     | FAX                                        | PROJECT              | OA.                                       |                 |     |           | <u> </u> |     | _  |               |              |          |           |     |          |             |     |          |          |          |          | RECEIVED BY (Signature)     | Mallon 10/10               | Si Si                        |                    | 2002                         | D Return D        |
| Ed                                                       | \S\                                                   | •                                          | , Š                  | Container Type                            |                 |     |           |          |     | ., | :             |              |          |           |     |          | ,           |     |          |          |          |          | AE.                         |                            | 1.                           |                    | VST                          | Ę.                |
| 4                                                        | 3                                                     | . [                                        | ١                    |                                           |                 |     |           |          |     |    |               |              |          |           |     |          |             |     |          | _        | _        |          |                             | (4:)                       |                              |                    | ALI                          | X 6.8K            |
| tan                                                      | f                                                     |                                            |                      | Sample<br>Type                            |                 |     |           |          | 1   |    |               |              |          |           |     |          |             |     |          | 1        |          |          | E E                         | TC:41 80/69/01             | TIME                         |                    | SAMPLE DISPOSAL INSTRUCTIONS | @ \$2.00 each     |
| 13                                                       | ž                                                     | <b>\</b>                                   |                      | Sar                                       |                 |     |           |          |     |    |               |              |          |           |     |          |             |     | _        | _        | _        |          | DATE/TIME                   | 369                        | DATE/TIME                    | •                  | Sio                          | 9                 |
| à                                                        |                                                       | 10                                         |                      | Птв                                       | 12:20           | ;   |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          |                             | 6                          | 0                            |                    | APLE                         | POSA              |
| 3                                                        | Ā                                                     | 0                                          |                      | <u></u>                                   | Suther          |     |           | -        |     |    |               | <u> </u>     | -        |           | _   | -        |             |     |          | 7        | 7        |          |                             |                            | چا                           |                    | SA                           | N DIS             |
| CLIENT: Wishington Population of Fight of Willife (WISH) | ADDRESS: 2315 N. Discours, Place Sooken Willy, WA PAK | PHONE: (54) 872-1001                       | #                    | Depth                                     | νŽ              |     |           | *        |     |    | _             | _            | <u> </u> | <u> </u>  |     | <b> </b> |             |     |          | $\dashv$ |          | _        | RELINQUISHED BY (Signature) | • (                        | RELINQUISHED BY (Signature)  |                    |                              | D ESN DISPOSAL    |
| She                                                      | 316                                                   | 00                                         |                      | <u>6</u>                                  |                 |     |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          | Sigr                        |                            | 8                            |                    |                              |                   |
| 3                                                        | d                                                     | 3                                          | S                    | qu                                        |                 | :   |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          | D BY                        | M                          | 60                           |                    |                              |                   |
|                                                          | -SS                                                   | 7                                          | <u>d</u> <u>L</u>    | Ž                                         |                 |     |           |          |     |    |               |              |          |           |     |          |             |     |          |          |          |          | ISH                         | 1                          | ISE<br>TE                    |                    |                              |                   |
| Ē                                                        | OR                                                    | S                                          | CLIENT PROJECT #:    | Sample Number                             |                 |     |           |          |     |    |               |              |          |           |     |          |             | ,   |          |          |          | -        | INOL                        | 16/                        | 唇                            |                    |                              |                   |
| Ö                                                        | AD                                                    | £                                          | ರ                    |                                           |                 | 2   | 65        | 4        | Ç.  | 9  | 1             | œ            | 0        | 6         | F   | 5        | 13.         | 14. | 15.      | 16.      | 7        | 18.      | REL                         |                            | 띭                            | ·                  |                              | لِل               |

Washington Department of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| 8260, μg/L (Water)          | Reporting | MTH BLK  | LCS      | Little Hatch Lake | MS       | MSD      | RPD   |
|-----------------------------|-----------|----------|----------|-------------------|----------|----------|-------|
| Date analyzed               | Limits    | 12/18/08 | 12/18/08 | 12/18/08          | 12/18/08 | 12/18/08 |       |
|                             |           |          |          |                   |          |          |       |
| Dichlorodifluoromethane     | 1.0       | nd       |          | nd                |          |          |       |
| Chloromethane               | 1.0       | nd nd    |          | nd                |          |          |       |
| Vinyl chloride              | 0.2       | nd       |          | nd nd             |          |          |       |
| Bromomethane                | 1.0       | nd       |          | nd nd             |          |          |       |
| Chloroethane                | 1.0       |          |          |                   |          |          |       |
|                             | 1.0       | nd       |          | nd                |          |          |       |
| Trichlorofluoromethane      |           | nd       |          | nd                | •        |          |       |
| Acetone                     | 10.0      | nd       | 40.404   | nd                | 40.40/   | 4000/    | 0.007 |
| 1,1-Dichloroethene          | 1.0       | nd       | 124%     | nd                | 124%     | 123%     | 0.8%  |
| Methylene chloride          | 1.0       | nd       |          | nd                |          |          |       |
| Methyl-t-butyl ether (MTBE) | 1.0       | nd       |          | nd                |          |          |       |
| trans-1,2-Dichloroethene    | 1.0       | nd       |          | · nd              |          |          |       |
| 1,1-Dichloroethane          | 1.0       | nd       |          | nd                |          |          |       |
| 2-Butanone (MEK)            | 10.0      | nd       |          | nd                |          |          |       |
| cis-1,2-Dichloroethene      | 1.0       | nd       |          | nd                |          |          |       |
| 2,2-Dichloropropane         | 1.0       | nd       |          | nd                |          |          |       |
| Chloroform                  | 1.0       | . nd     |          | nd                |          |          |       |
| Bromochloromethane          | 1.0       | nd       |          | · nd              |          |          |       |
| 1,1,1-Trichloroethane       | 1.0       | nd       |          | · nd              |          | ÷        |       |
| 1,2-Dichloroethane (EDC)    | 1.0       | nd       |          | nd                |          |          |       |
| 1,1-Dichloropropene         | 1.0       | nd       |          | nd                |          | ×        |       |
| Carbon tetrachloride        | 1.0       | nd       |          | nd                |          |          |       |
| Benzene                     | 1.0       | nd       | 101%     | nd                | 100%     | 100%     | 0.0%  |
| Trichloroethene (TCE)       | 1.0       | nd       | 93%      | nd                | 93%      | 93%      | 0.0%  |
| 1,2-Dichloropropane         | 1.0       | nd       | 0070     | nd                | 0070     | 0070     | 5.070 |
| Dibromomethane              | 1.0       | nd       |          | nd                |          |          |       |
| Bromodichloromethane        | 1.0       | nd       |          | nd                |          |          |       |
| 4-Methyl-2-pentanone (MIBK) | 1.0       | nd       |          | nd                |          |          |       |
| cis-1,3-Dichloropropene     | 1.0       | nd       |          | nd                |          |          |       |
| Toluene                     | 1.0       | nd       | 116%     |                   | 116%     | 116%     | 0.0%  |
|                             | 1.0       |          | 11076    | nd<br>nd          | 11076    | 110%     | 0.0%  |
| trans-1,3-Dichloropropene   |           | nd       |          | nd                | •        |          |       |
| 1,1,2-Trichloroethane       | 1.0       | nd       | ,        | nd<br>            |          |          |       |
| 2-Hexanone                  | 1.0       | nd       |          | nd<br>t           |          |          |       |
| 1,3-Dichloropropane         | 1.0       | nd ·     |          | nd                |          |          |       |
| Dibromochloromethane        | 1.0       | nd       |          | nd                |          |          |       |
| Tetrachloroethene (PCE)     | 1.0       | nd       |          | nd                |          |          |       |
| 1,2-Dibromoethane (EDB)     | 1.0       | nd       |          | nd                |          |          |       |
| Chlorobenzene               | 1.0       | nd       | 123%     | , ud              | 125%     | 120%     | 4.1%  |
| 1,1,1,2-Tetrachloroethane   | 1.0       | nd       |          | nd                |          |          |       |
| Ethylbenzene                | 1.0       | nd       |          | nd                |          |          |       |
| Xylenes                     | 3.0       | nd       |          | nd                |          |          |       |
| Styrene                     | 1.0       | nd       |          | nd                |          |          |       |
| Bromoform                   | 1.0       | nd       |          | nd                |          |          |       |
| 1,1,2,2-Tetrachloroethane   | 1.0       | nd       |          | nd                |          |          |       |
| Isopropylbenzene            | 1.0       | nd       |          | nd                |          | •        |       |
| 1,2,3-Trichloropropane      | 1.0       | nd       |          | nd                |          |          |       |
| Bromobenzene                | 1.0       | nd       |          | nd                |          |          |       |
| n-Propylbenzene             | 1.0       | nd       |          | nd                |          |          |       |
| 2-Chlorotoluene             | 1.0       | nd       |          | nd                |          |          |       |
| 4-Chlorotoluene             | 1.0       | nd       |          | nd                | •.       |          |       |
| 1,3,5-Trimethylbenzene      | 1.0       | nd       |          | nd                |          |          |       |
| tert-Butylbenzene           | 1.0       | nd       |          | nd                |          |          |       |
| 1,2,4-Trimethylbenzene      | 1.0       | nd       |          | nd                |          |          |       |
| sec-Butylbenzene            | 1.0       | nď       | *        | nd                |          |          |       |
| 1,3-Dichlorobenzene         | 1.0       | nd       |          | nd .              |          |          |       |
| 1,4-Dichlorobenzene         | 1.0       | nd nd    |          | nd                |          |          |       |
|                             | 1.0       |          |          |                   |          |          |       |
| Isopropyltoluene            | 1.0       | nd       |          | nd                |          |          |       |

Washington Department of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

**Analytical Results** 

| 8260, µg/L (Water)          | Reporting | MTH BLK  | LCS      | Little Hatch Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MS       | MSD      | RPD |
|-----------------------------|-----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----|
| Date analyzed               | Limits    | 12/18/08 | 12/18/08 | 12/18/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/18/08 | 12/18/08 |     |
|                             |           |          |          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |          | <i>,</i> |     |
| 1,2-Dichlorobenzene         | 1.0       | nd       |          | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        |          |     |
| n-Butylbenzene              | 1.0       | nd       |          | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |     |
| 1,2-Dibromo-3-Chloropropane | 1.0       | nd       |          | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |     |
| 1,2,4-Trichlorobenzene      | 1.0       | nd       |          | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |     |
| Naphthalene                 | 1.0       | nd       |          | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |     |
| Hexachloro-1,3-butadiene    | 1.0       | nd       |          | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |     |
| 1,2,3-Trichlorobenzene      | 1.0       | nd       |          | nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |     |
| Surrogate recoveries        |           |          |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 4        |     |
| Dibromofluoromethane        |           | 88%      | 85%      | 108%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101%     | 98%      | *   |
| Toluene-d8                  |           | 104%     | 107%     | 110%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121%     | 118%     |     |
| 4-Bromofluorobenzene        |           | 103%     | 107%     | 111%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114%     | 114%     |     |

**Data Qualifiers and Analytical Comments** 

nd - not detected at listed reporting limits
Acceptable Recovery limits: 65% TO 135%

Washington Department of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| 8270, μg/L                    |           | MTH BLK  | LCS       | Little Hatch    | MS       | MSD      | RPD |
|-------------------------------|-----------|----------|-----------|-----------------|----------|----------|-----|
| Matrix                        | Water     | Water    | Water     | Water           | Water    | Water    |     |
| Date extracted                | Reporting | 12/17/08 | .12/17/08 | 12/17/08        | 12/17/08 | 12/17/08 |     |
| Date analyzed                 | Limits    | 12/17/08 | 12/17/08  | 12/17/08        | 12/17/08 | 12/17/08 |     |
|                               |           |          |           |                 |          |          | •   |
| Pyridine                      | 2.0       | nd       |           | nd              |          |          |     |
| Aniline                       | 2.0       | nd       |           | <sub>.</sub> nd |          |          |     |
| Phenol                        | 2.0       | nd       |           | nd              | 94%      | 93%      | 1%  |
| 2-Chlorophenol                | 2.0       | nd       |           | nd              | 115%     | 111%     | 4%  |
| Bis (2-chloroethyl) ether     | 2.0       | · nd     | •         | nd              |          | •        |     |
| 1,3-Dichlorobenzene           | 2.0       | nd       |           | nd              |          |          |     |
| 1,4-Dichlorobenzene           | 2.0       | . nd     | 103%      | nd              | 101%     | 102%     | 1%  |
| 1,2-Dichlorobenzene           | 2.0       | nd       |           | nd              |          |          |     |
| N-methylpyrrolidone           | 2.0       | nd       |           | nd              | •        |          |     |
| Benzyl alcohol                | 2.0       | nd       |           | nd              |          |          |     |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |           | nd              |          |          |     |
| Bis (2-chloroisopropyl) ether | 10.0      | nd       |           | · nd            |          |          |     |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd       |           | nd              |          |          |     |
| Hexacholorethane              | 2.0       | nd       |           | nd              |          |          |     |
| N-Nitroso-di-n-propylamine    | 2.0       | nd       |           | nd <sub>.</sub> | 123%     | 122%     | 1%  |
| Nitrobenzene                  | 2.0       | nd       |           | nd              |          |          |     |
| Isophorone                    | 2.0       | nd       |           | <sup>'</sup> nd |          |          |     |
| 2-Nitrophenol                 | 10.0      | nd       |           | nd .            |          |          |     |
| 4-Nitrophenol                 | 10.0      | nd       |           | nd              |          |          | •   |
| 2,4-Dimethylphenol            | 2.0       | nd       |           | nd              | 107%     | 107%     | 0%  |
| Bis (2-chloroethoxy) methane  | 2.0       | nd       |           | nd              |          | •        |     |
| 2,4-Dichlorophenol            | 10.0      | nd       |           | nd              |          |          |     |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |           | nd              | 116%     | 118%     | 2%  |
| Naphthalene                   | 2.0       | nd       |           | nd              | 7        |          |     |
| 4-Chloroaniline               | 10.0      | nd       |           | nd              | •        |          |     |
| Hexachlorobutadiene           | 2.0       | nd       | 123%      | nd              |          |          |     |
| 4-Chloro-3-methylphenol       | 10.0      | nd       |           | nd              | 81%      | 81%      | 0%  |
| 2-Methylnapthalene            | 2.0       | nd       |           | nd.             |          |          |     |
| 1-Methylnapthalene            | 2.0       | nd       |           | nd              |          |          |     |
| Hexachlorocyclopentadiene     | 2.0       | nd       |           | nd              |          |          |     |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |           | nd              |          |          |     |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |           | nd              |          |          |     |
| 2-Chloronaphthalene           | 2.0       | nd       |           | nd              |          |          |     |
| 2-Nitroaniline                | 10.0      | nd       |           | nd              |          |          |     |
| 1,4-Dinitrobenzene            | 10.0      | nd       |           | nd              |          |          |     |
| Dimethylphthalate             | 2.0       | nd       |           | nd              |          |          |     |
| Acenaphthylene                | 0.2       | nd       |           | nd              |          |          |     |
| 1,3-Dinotrobenzene            | 10.0      | nd       | •         | nd              |          |          |     |
| 2,6-Dinitrotoluene            | 2.0       | nd       |           | nd              |          |          |     |
| 1,2-Dinitrobenzene            | 2.0       | nd       |           | nd              | •        | •        |     |
| Acenaphthene                  | 0.2       | nd       | 131%      | nd              | 98%      | 97%      | 1%  |
| 3-Nitroaniline                | 10.0      | nd       |           | nd              |          |          |     |
| Dibenzofuran                  | 2.0       | nd       |           | nd              |          |          |     |
| 2,4-Dinitrotoluene            | 2.0       | nd       |           | nd              | 88%      | 87%      | 1%  |
| 2,3,4,6-Tetrachiorophenol     | 2.0       | nd       |           | nd              |          |          |     |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |           | nd              |          |          |     |
| 2,4-Dinitrophenol             | 10.0      | nd       |           | nd              |          |          |     |
| Fluorene                      | 0.2       | nd       |           | nd              |          |          |     |
|                               |           |          |           |                 |          |          |     |

Washington Department of Fish & Wildlife LITTLE HATCH LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

| 8270, μg/L                          |           | MTH BLK     | LCS      | Little Hatch | MS         | MSD        | RPD |
|-------------------------------------|-----------|-------------|----------|--------------|------------|------------|-----|
| Matrix                              | Water     | Water       | Water    | Water        | Water      | Water      |     |
| Date extracted                      | Reporting | 12/17/08.   | 12/17/08 | 12/17/08     | 12/17/08   | 12/17/08   |     |
| Date analyzed                       | Limits    | 12/17/08    | 12/17/08 | 12/17/08     | 12/17/08   | 12/17/08   |     |
| 4-Chlorophenylphenylether           | 2.0       | nd          |          | nd           |            |            |     |
| Diethylphthalate                    | 2.0       | nd          |          | nd           |            |            |     |
| 4-Nitroaniline                      | 10.0      | nd          |          | nd           |            |            |     |
| 4,6-Dinitro-2-methylphenol          | 10.0      | nd          |          | nd           |            |            |     |
| N-nitrosodiphenylamine              | 2.0       | . nd        | 125%     | nd           |            |            |     |
| Azobenzene                          | 2.0       | nd          |          | nd           | •          | •          | ,   |
| 4-Bromophenylphenylether            | 2.0       | nd          |          | nd           |            |            |     |
| Hexachlorobenzene                   | 2.0       | nd          |          | nd           |            |            |     |
| Pentachlorophenol                   | 10.0      | nd          |          | nd           |            |            |     |
| Phenanthrene                        | 0.2       | nd          |          | nd           | 4          |            |     |
| Anthracene                          | 0.2       | nd          |          | nd           |            |            | ,   |
| Carbazole                           | 2.0       | nd          |          | nd           |            |            |     |
| Di-n-butylphthalate                 | 2.0       | nd          |          | nd           |            |            |     |
| Fluoranthene                        | 0.2       | nd          | 127%     | nd           |            |            |     |
| Pyrene                              | 0.2       | nd          |          | nd           | 89%        | 86%        | 3%  |
| Butylbenzylphthalate                | 2.0       | nd          |          | nd           |            |            |     |
| Bis(2-ethylhexyl) adipate           | 2.0       | nd          |          | nd           |            |            |     |
| Benzo(a)anthracene                  | 0.2       | nd          |          | nd           |            |            |     |
| Chrysene                            | 0.2       | nd          |          | nd           |            | '          |     |
| Bis (2-ethylhexyl) phthalate        | 2.0       | nd          |          | nd           |            |            |     |
| Di-n-octyl phthalate                | 2.0       | nd          | 86%      | nd           |            |            |     |
| Benzo(b)fluoranthene                | 0.2       | .nd         |          | nd           |            |            |     |
| Benzo(k)fluoranthene                | 0.2       | nd          |          | nd           |            | •          |     |
| Benzo(a)pyrene                      | .0.2      | nd          | 82%      | nd           |            |            |     |
| Dibenzo(a,h)anthracene              | 0.2       | nd          |          | nd .         |            |            |     |
| Benzo(ghi)perylene                  | 0.2       | nd          |          | nd           |            |            |     |
| Indeno(1,2,3-cd)pyrene              | 0.2       | nd          |          | nd           |            |            |     |
| Surrogata racovarios                |           | •           |          |              |            |            |     |
| Surrogate recoveries 2-Fluorophenol |           | 92%         | 112%     | 111%         | 89%        | 91%        |     |
| Phenol-d6                           |           | 95%         | 125%     | 100%         | 96%        |            |     |
| Nitrobenzene-d5                     |           | 95%<br>111% | 131%     | 89%          | 96%<br>92% | 99%<br>93% |     |
| 2-Fluorobiphenyl                    | •         | 86%         | 125%     | 81%          | · 81%      | 84%        |     |
| 2,4,6-Tribromophenol                |           | 63%         | 125%     | 61%          | 78%        | 78%        |     |
| 4-Terphenyl-d14                     |           | 85%         | 82%      | 75%          | 76%<br>79% | 78%<br>78% |     |
| T- I GIPHENYFU IT                   |           | 00 /0       | UZ /0    | 1076         | 1370       | 1070       |     |

#### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits:

2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

#### POST-REHABILITATION REPORT

Water: Williams Lake

Location: Sec 36, T38N, R38E; approximately 14 miles northwest of Colville, Stevens County,

WA.

DATES TREATED: October 9, 2008

**PURPOSE:** Improve trout survival and growth through reduction of undesirable fish populations.

**LISENCED APPLICATOR:** Robert Jateff, Washington Department of Fish and Wildlife (WDFW), District 6 Fisheries Biologist, Pesticide License # 74965. Jon Anderson, WDFW, Native Resident Species Fisheries Manager, Pesticide License # 69176.

#### LAKE DESCRIPTION full pool and (at treatment, if different):

Full pool at treatment.

Surface acres: 38.0

Depth: average ~ 26 ft; maximum 47 ft

Volume: 1,058 acre-feet

Weight of Water: 2,665,600,000 lbs.

Connectivity: Inlets – Intermittent stream. Outlet – None.

#### TREATMENT DESCRIPTION:

**Toxicant used: Rotenone -** Cube powdered Fish Toxicant EPA Reg # 6458-6; Liquid CFT Legumine EPA Reg # 75338-2

#### Actual Rotenone used

|            | Powder       | Liquid    |               |
|------------|--------------|-----------|---------------|
| Date       | lbs @ conc.  | gals @ 5% | ppm (product) |
| 10/09/2008 | 1,870 @ 7.0% | 5 (CFT)   | 1.0           |

Equivalent 2,618 @ 5.0%

All powder was slurried with lake water, and liquid was mixed with lake water and sprayed in shallow waters.

The lake was treated at a rotenone concentration of 1 ppm product (0.05 ppm actual rotenone).

Detoxification Procedures: treated waters naturally detoxified. No detoxification was necessary, as there was no surface water connection to the outlet stream.

#### SPECIES OF FISH ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

#### Species, size; estimated abundance

Yellow perch 3-6"; thousands (maximum estimate = 75,000) Goldfish 1-6"; hundreds (maximum estimate = 1000)

Rainbow trout 10-14"; tens (10 observed, maximum estimate = 50)

PHYSICAL CHARACTERISTICS OF THE LAKE DURING TREATMENT:

Pre-treatment water quality parameters – October 3, 2008.

| Depth<br>(m) | Water temp<br>(°C) | D.O.<br>(mg/L) | pН   | Conductivity (µS/cm) | Turbidity<br>(NTU) |
|--------------|--------------------|----------------|------|----------------------|--------------------|
| Surface      | 15.28              | 7.78           | 7.95 | 371.0                | 0.0                |
| 1            | 15.31              | 7.76           | 8.15 | 370.1                | 0.0                |
| 2            | 15.34              | 7.71           | 8.26 | 370.0                | 3.3                |
| 3            | 15.35              | 7.65           | 8.28 | 370.8                | 0.1                |
| 4            | 15.35              | 7.62           | 8.30 | 370.6                | 0.0                |
| 5            | 15.34              | 7.53           | 8.29 | 370.8                | 0.0                |
| 6            | 15.33              | 7.49           | 8.29 | 370.8                | 0.0                |
| 7            | 15.31              | 7.42           | 8.29 | 371.3                | 0.0                |
| 8            | 15.14              | 5.79           | 8.11 | 373.6                | 0.7                |
| 9            | 11.56              | 0.60           | 7.51 | 445.5                | 17.2               |
| 10           | 8.73               | 0.27           | 7.18 | 449.6                | 7.4                |
| 11           | 7.99               | 0.20           | 7.06 | 456.0                | 8.8                |
| 12           | 7.67               | 0.19           | 7.02 | 458.2                | 12.2               |
|              |                    |                |      |                      |                    |

**PRE- AND POST-TREATMENT MONITORING** (all monitoring conducted as outlined in DFW's NPDES permit WA0041009):

*Impact to non-targeted organisms* – Zooplankton were sampled at Williams Lake for diversity and abundance just prior to treatment, and will be sampled again at six months and 12 months post-treatment. Results will be available by separate report.

Liquid rotenone formulation longevity – The shallow, shoreline areas of Williams Lake were treated with CFT. Water samples were taken in an area of the lake where the heaviest concentrations of liquid rotenone were applied (boat launch on west end of the lake) 24 hours and eight weeks post-treatment to check for residues related to the carriers present in the liquid formulation of rotenone. Samples were sent to an accredited lab for analyses per EPA methods. Samples were analyzed for 63 volatile organic compounds and 75 semi-volatile organic compounds, and detection limits were 0.2-10.0 ug/l, variously. In the 24-hour sample and the 8-week sample, the amounts of all 138 compounds potentially present in liquid rotenone formulations were below detection limits.

*Period of Toxicity* – Persistent rotenone toxicity will be determined by bioassay. Live trout will be held in a modified minnow trap (1 gal volume with free flow-through) in the lake and survival monitored. Trout exhibit signs of stress and lose equilibrium after three hours at rotenone concentrations of 0.05 ppm product (0.0025 ppm actual rotenone) at water temperatures of 47° F, and response is fairly uniform among individuals in similar circumstances. Rotenone is considered below detection limits when trout remain alive for at least 48 hours. Individual mortalities within a group of trout frequently occur due to mechanical damage when handled or transported/confined in relatively small containers.

Bioassay was not completed before ice-up. However, following ice-out in the spring, bioassay will be completed to ensure detoxification.

#### GENERAL DESCRIPTION OF TREATMENT PROJECT AND OTHER COMMENTS:

Treatment of Williams Lake was conducted on October 9, 2008. Conditions were generally favorable. Weather was clear and sunny with light winds from the north-west. Rotenone was loaded and delivered the morning of the treatment. A crew of 7 WDFW employees was present. The treatment was staged at the boat launch located on the east side of the lake. Two pumper-boats were used to slurry powdered rotenone with lake water, and each boat had a crew of two employees. Two employees also crewed the airboat, which was used to apply liquid rotenone to shoreline areas. One employee managed shoreline operations. Application of powdered rotenone began at 0900 and was completed by noon. Liquid rotenone application was concentrated in the shallows around the entire lake. Liquid rotenone application began at 1000 and was completed by noon.

Rehabilitation of Williams Lake was considered fairly successful. Dying yellow perch were observed within three hours of beginning treatment. One dying goldfish was also observed immediately following treatment, as well as small numbers of dead rainbow trout. The following day, very large numbers of dead yellow perch were observed around the shoreline. Moderate numbers of dead and dying goldfish were also observed.

Williams Lake was treated with rotenone at a concentration of 1 ppm to remove yellow perch. Goldfish, which were not captured during pre-rehabilitation fish sampling of the lake (and consequently were unknown to WDFW personnel), were present in moderate numbers. It is unlikely that rotenone treatment at 1 ppm eliminated the goldfish population, as goldfish are capable of withstanding rotenone concentrations of this magnitude. Therefore, it is likely that the goldfish population will expand in future years, and Williams Lake will require rehabilitation again within 5-7 years.

#### **COST:**

Treatment of Williams Lake required about 6 man-days (man-day = 8 hrs) of labor from pretreatment preparation (signing, sampling, rotenone and equipment transport) through treatment, clean up, and travel. Total cost of treatment (rotenone, labor @ \$268.00/man-day, travel, expendable equipment) was approximately \$5,275.00, including about \$1,608.00 for labor during the treatment and \$3,465.50 for rotenone (1,870 lbs powder @ \$1.65/lb @ 5.0%, delivered; 5 gal liquid @ \$76.00/gal). Estimated time for pre-rehabilitation proposals, general public outreach, post-rehabilitation sampling and reports added 3 days.

|     |          |           |   |     |   | ··· | •                                     |     |     |
|-----|----------|-----------|---|-----|---|-----|---------------------------------------|-----|-----|
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   | ,   | •                                     | e   |     |
|     | :        |           |   |     |   |     |                                       | 14  |     |
|     |          | •         |   |     |   | •   |                                       |     | · . |
|     |          |           |   | •   |   |     |                                       | ,   | ,   |
| •   |          |           | • |     |   |     |                                       |     |     |
|     |          | •         |   | •   |   |     |                                       |     | •   |
|     |          |           |   | •   |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
| . ' |          | · · · · · |   |     |   |     |                                       | . • |     |
|     |          | <b>Ø</b>  |   |     |   |     |                                       |     |     |
|     |          | •         |   |     |   |     | e e e e e e e e e e e e e e e e e e e |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          | •         | , | • • |   |     |                                       |     |     |
|     |          |           |   |     | • |     |                                       | •   | ·   |
| •   |          |           |   |     | • |     |                                       |     |     |
| •   |          |           |   |     | • |     |                                       |     | •   |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       |     |     |
|     | •        |           |   |     |   |     |                                       |     |     |
|     | •        |           |   |     |   | •   |                                       |     |     |
|     | <i>.</i> |           |   |     |   |     | •                                     |     |     |
| •   |          |           |   |     |   |     |                                       |     | •   |
|     |          |           |   |     |   |     |                                       |     |     |
|     |          | •         |   |     | • |     |                                       |     |     |
|     |          |           |   |     |   |     |                                       | •   |     |
|     | ( )      |           |   |     |   |     |                                       |     | •   |
|     |          |           |   |     |   |     |                                       |     |     |

Washington Dept. of Fish & Wildlife WILLIAMS LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com (360) 459-3432 Fav

| Analytical Results<br>8260, µg/L (Water)     |                     | MTH BLK  | LCS      | Williams Lake | MS       | MSD      | RPC |
|----------------------------------------------|---------------------|----------|----------|---------------|----------|----------|-----|
|                                              | Reporting<br>Limits | 10/15/08 | 10/15/08 | 30/45/0R      | 10/15/08 | 10/15/08 |     |
| Date analyzed                                | Llitto              | 10/10/00 | 10/10/00 | 100           |          | 11.00    |     |
| Dichlorodifluoromethane                      | 1.0                 | nd       |          | nd            |          |          |     |
| Chloromethane                                | 1.0                 | nd       |          | nd<br>nd      |          |          |     |
| Vinyl chloride                               | 0.2                 | nd<br>nd |          | nd            |          |          |     |
| Bromomethane                                 | 1.0<br>1.0          | nd       |          | nd            |          |          |     |
| Chloroethane<br>Trichlorofluoromethane       | 1.0                 | nd       |          | nd            |          |          |     |
| 1.1-Dichloroethene                           | 1.0                 | nd       | 78%      | nd            | 89%      | 78%      | 13% |
| Methylene chloride                           | 1.0                 | nd       |          | nd            |          | ·        |     |
| trans-1,2-Dichloroethene                     | 1,0                 | nd       |          | nd            |          |          |     |
| 1,1-Dichloroethane                           | 1.0                 | · nd     |          | nd            |          |          |     |
| cis-1,2-Dichloroethene                       | 1,0                 | nd       |          | nd            |          |          |     |
| 2,2-Dichloropropane                          | 1.0                 | nd       |          | nd            |          |          |     |
| Chloroform                                   | 1.0                 | nd       |          | nd            |          |          |     |
| Bromochloromethane                           | 1.0                 | nd       |          | nd            |          |          |     |
| 1,1,1-Trichloroethane                        | 1.0                 | nd       |          | nd            |          |          |     |
| 1,2-Dichloroethane                           | 1.0                 | nd       |          | nd            |          |          |     |
| 1,1-Dichloropropene                          | 1.0                 | nd<br>nd |          | nd<br>- nd    |          |          |     |
| Carbon tetrachloride                         | 1.0<br>1.0          | nd<br>nd | 93%      | - na<br>nd    | 100%     | 90%      | 11% |
| Benzene                                      | 1.0                 | nd       | 92%      | nd            | 104%     | 91%      | 13% |
| Trichloroethene                              | 1.0                 | · nd     | . 32.70  | . nd          | 10470    | 0170     |     |
| 1,2-Dichloropropane<br>Dibromomethane        | 1.0                 | nd       |          | nd            | •        |          |     |
| Bromodichloromethane                         | 1,0                 | nd       |          | nd            |          |          |     |
| cis-1,3-Dichloropropene                      | 1,0                 | nd       |          | nd            |          |          |     |
| Toluene                                      | 1,0                 | nd       | 86%      | · nd          | 102%     | 83%      | 21% |
| rans-1,3-Dichloropropene                     | 1,0                 | nd       |          | nd            |          |          |     |
| 1,1,2-Trichloroethane                        | 1.0                 | nd       |          | nd-           |          |          |     |
| 1,3-Dichloropropane                          | 1.0                 | nd       |          | nd            |          |          |     |
| Dibromochloromethane                         | 1,0                 | nd       |          | nd            |          |          |     |
| Tetrachloroethene                            | 1.0                 | nd       |          | , nd          |          |          |     |
| 1,2-Dibromoethane (EDB)                      | 1,0                 | nd       |          | nd            |          |          |     |
| Chlorobenzene                                | 1,0                 | nd       | 98%      | , nd          | 106%     | 89%      | 17% |
| 1,1,1,2-Tetrachloroethane                    | 1.0                 | nd       |          | nd            |          |          |     |
| Ethylbenzene                                 | 1.0                 | nd       |          | · nd          |          |          |     |
| Xylenes                                      | 1.0                 | nd       |          | nd<br>nd      |          |          |     |
| Styrene                                      | 1.0<br>1.0          | nd<br>nd |          | nd            |          |          |     |
| Bromoform                                    | 1.0                 | nd       |          | nd            |          |          |     |
| 1,1,2,2-Tetrachloroethane<br>sopropylbenzene | 1.0                 | nd       |          | nd            |          |          |     |
| 1,2,3-Trichloropropane                       | 1.0                 | nd       |          | nd            |          |          |     |
| Bromobenzene                                 | 1.0                 | nd       |          | nd            |          |          |     |
| n-Propylbenzene                              | 1.0                 | nd       | •        | nđ            |          |          |     |
| 2-Chlorotoluene                              | 1.0                 | nd       |          | nd            |          |          |     |
| -Chlorotoluene                               | 1.0                 | nd       |          | nd            |          | •        |     |
| 1,3,5-Trimethylbenzene                       | 1.0                 | nd       |          | nd            |          |          |     |
| ert-Butylbenzene                             | 1.0                 | nd       |          | nd            |          |          |     |
| 1,2,4-Trimethylbenzene                       | 1.0                 | nd       |          | nd            |          |          |     |
| sec-Butylbenzene                             | . 1.0               | nd       |          | nd            |          |          |     |
| 1,3-Dichlorobenzene                          | 1.0                 | nd       |          | . nd          |          |          |     |
| 1,4-Dichlorobenzene                          | 1.0                 | nd       |          | nd            |          |          |     |
| sopropyltoluene                              | 1.0                 | nd<br>   |          | nd            |          |          |     |
| ,2-Dichlorobenzene                           | 1,0                 | nd       |          | nd<br>nd      |          |          |     |
| n-Butylbenzene                               | 1.0                 | nd       |          | nd<br>nd      |          |          |     |
| 1,2-Dibromo-3-Chloropropane                  | 1,0                 | nd<br>nd |          | nd            |          |          |     |
| 1,2,4-Trichlorobenzene                       | 1.0<br>1.0          | nd       |          | nd            |          |          |     |
| Naphthalene                                  | 1.0                 | nd       |          | nd            |          |          |     |
| lexachloro-1,3-butadiene                     | 1.0                 | nd nd    |          | nd            |          |          |     |
| ··· work and a second                        | 1.0                 |          | <u> </u> |               |          |          |     |
| Surrogate recoveries Dibromofluoromethane    |                     | 92%      | 90%      | 87%           | 92%      | 94%      |     |
| Jibromoliuoromethane<br>Foluene-d8           |                     | 97%      | 99%      | 97%           | 101%     | 98%      |     |
| 4-Bromofluorobenzene                         |                     | 102%     | 104%     | 106%          | 117%     | 105%     |     |

Data Qualifiers and Analytical Comments.
Ind - not detected at listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

Washington Dept. of Fish & Wildlife WILLIAMS LAKE REHAB PROJECT Stevens Co., Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| 8270, μg/L                    |           | MTH BLK     | LCS W    | illiams Lake | MS       | MSD      | RPD  |
|-------------------------------|-----------|-------------|----------|--------------|----------|----------|------|
| Matrix                        | Water     | Water       | Water    | Water        | Water    | Water    |      |
| Date extracted                | Reporting | 10/16/08    | 10/16/08 | 10/16/08     | 10/13/08 | 10/13/08 |      |
| Date analyzed                 | Limits    | 10/16/08    | 10/16/08 | 10/16/08     | 10/13/08 | 10/13/08 |      |
|                               |           |             |          |              |          |          |      |
| Pyridine                      | 2.0       | nd          |          | nd           |          |          |      |
| Aniline                       | 2.0       | nd          |          | nd           | D.4.04   | 0004     | E0/  |
| Phenol                        | 2.0       | nd          |          | nd           | 81%      | 85%      | 5%   |
| 2-Chlorophenol                | 2.0       | · nd        |          | nd           | 106%     | 110%     | 4%   |
| Bis (2-chloroethyl) ether     | 2.0       | nd          |          | nd           |          |          | ,    |
| 1,3-Dichlorobenzene           | 2.0       | nd          |          | nd           |          |          |      |
| 1,4-Dichlorobenzene           | 2.0       | nd          | 120%     | nd           | 102%     | 100%     | . 2% |
| 1,2-Dichlorobenzene           | 2.0       | nd          |          | nd           |          |          |      |
| N-methylpyrrolidone           | 2.0       | nd          |          | nd           |          |          |      |
| Benzyl alcohol                | 2.0       | nd          |          | nd           |          |          |      |
| 2-Methylphenol (o-cresol)     | 2.0       | nd          |          | nd           |          | •        |      |
| Bis (2-chloroisopropyl) ether | 10.0      | nd          |          | nd           |          |          | •    |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd          |          | nď           |          |          |      |
| Hexacholorethane              | 2.0       | · nd        | •        | nd           |          |          |      |
| N-Nitroso-di-n-propylamine    | 2.0       | nd          |          | nd           | 108%     | 109%     | 1%   |
| Nitrobenzene                  | 2.0       | nd          |          | nd           | •        |          | ,    |
| Isophorone                    | 2.0       | nd          |          | nd           |          |          |      |
| 2-Nitrophenol                 | 10.0      | . nd        |          | nd           |          | *        |      |
| •                             | 10.0      | nd          | 2.0      | nd           |          |          |      |
| 4-Nitrophenol                 | 2.0       | nd          |          | nd           | 82%      | 84%      | 2%   |
| 2,4-Dimethylphenol            | 2.0       | nd          |          | nd           |          |          |      |
| Bis (2-chloroethoxy) methane  | 10.0      | nd          |          | nd           |          | •        |      |
| 2,4-Dichlorophenol            | 2.0       | nd          |          | nd           | 124%     | 120%     | 3%   |
| 1,2,4-Trichlorobenzene        | 2.0       | nd nd       |          | nd           | 12-170   | 12070    | •,   |
| Naphthalene                   |           |             |          | nd           |          |          |      |
| 4-Chloroaniline               | 10.0      | nd          | 129%     | . nd         |          |          |      |
| Hexachlorobutadiene           | 2.0       | nd          | 12976    | . nd         | 66%      | 66%      | 0%   |
| 4-Chloro-3-methylphenol       | 10.0      | nd ·        |          |              | 0076     | 00 /6    | 0 70 |
| 2-Methylnapthalene            | 2.0       | nd          |          | nd           |          |          |      |
| 1-Methylnapthalene            | 2.0       | nd          |          | nd           |          |          |      |
| Hexachlorocyclopentadiene     | 2.0       | nd          |          | nd           |          |          |      |
| 2,4,6-Trichlorophenol         | 10.0      | nd          |          | nd           |          |          |      |
| 2,4,5-Trichlorophenol         | 10.0      | nd          |          | nd           |          |          | •    |
| 2-Chloronaphthalene           | 2.0       | nd          |          | nd           |          |          |      |
| 2-Nitroaniline                | 10.0      | nd          |          | nd           |          |          |      |
| 1,4-Dinitrobenzene            | 10.0      | nd          |          | nd           |          |          |      |
| Dimethylphthalate             | 2.0       | nd          |          | nd           |          |          |      |
| Acenaphthylene                | 0.2       | nd          |          | nd           |          |          |      |
| 1,3-Dinotrobenzene            | 10.0      | nd          |          | nd           |          | •        |      |
| 2,6-Dinitrotoluene            | 2.0       | nd          |          | nd           |          |          |      |
| 1,2-Dinitrobenzene            | 2.0       | .n <b>d</b> | -        | nd           |          |          |      |
| Acenaphthene                  | 0.2       | nd          | 102%     | nd           | 115%     | 117%     | 2%   |
| 3-Nitroaniline                | 10.0      | nd          |          | nd           |          |          | *    |
| Dibenzofuran                  | 2.0       | nd          |          | nd           |          |          |      |
| 2,4-Dinitrotoluene            | 2.0       | nd          |          | nd           | 94%      | 98%      | 4%   |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd          |          | nd           |          |          |      |
| 2.3.5.6-Tetrachlorophenol     | 2.0       | nd          | *        | nd           |          |          |      |
|                               | 10.0      | nd          |          | nd           | •        |          |      |
| 2,4-Dinitrophenol             | 0.2       | nd          |          | nd           |          |          |      |
| Fluorene                      | 0.2       | 110         |          | iiu          |          |          |      |

Washington Dept. of Fish & Wildlife WILLIAMS LAKE REHAB PROJECT Stevens Co., Washington

**ESN Northwest** 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

| Analytical Results<br>8270, μg/L |           | MTH BLK  | LCS      | Williams Lake | MS         | MSD                                   | RPD                                     |
|----------------------------------|-----------|----------|----------|---------------|------------|---------------------------------------|-----------------------------------------|
| 6270, µg/L<br>Matrix             | Water     | Water    | Water    | Water         | Water      | Water                                 |                                         |
| Date extracted                   | Reporting | 10/16/08 | 10/16/08 | 10/16/08      | 10/13/08   | 10/13/08                              |                                         |
| Date analyzed                    | Limits    | 10/16/08 | 10/16/08 | 10/16/08      | 10/13/08   | 10/13/08                              |                                         |
| 4-Chlorophenylphenylether        | 2.0       | nd       |          | nď            |            |                                       |                                         |
| Diethylphthalate                 | 2.0       | nd       |          | nd            |            |                                       |                                         |
| 4-Nitroaniline                   | 10.0      | nd       |          | nd            |            |                                       | ,                                       |
| 4,6-Dinitro-2-methylphenol       | 10.0      | nd       |          | nd            |            |                                       |                                         |
| N-nitrosodiphenylamine           | 2.0       | nd       | 132%     | nd            |            |                                       |                                         |
| Azobenzene                       | 2.0       | nd       |          | nd            |            |                                       | ,                                       |
| 4-Bromophenylphenylether         | 2.0       | nd       |          | nd            |            |                                       |                                         |
| Hexachlorobenzene                | 2.0       | nd       |          | nd            |            |                                       |                                         |
| Pentachlorophenol                | 10.0      | nd       |          | nd            |            |                                       |                                         |
| Phenanthrene                     | 0.2       | nd       |          | nd            |            |                                       |                                         |
| Anthracene                       | 0.2       | nd       | ·        | nd            |            |                                       |                                         |
| Carbazole                        | 2.0       | nd       |          | nd            |            |                                       |                                         |
| Di-n-butylphthalate              | 2.0       | nd       |          | nd            |            |                                       |                                         |
| Fluoranthene                     | 0.2       | nd       | 125%     | nd            |            |                                       |                                         |
| Pyrene                           | 0.2       | nd       |          | nd            | 78%        | 79%                                   | . 19                                    |
| Butylbenzylphthalate             | 2.0       | nd       |          | nd            |            |                                       |                                         |
| 3is(2-ethylhexyl) adipate        | 2.0       | nd       |          | nd            | ,          |                                       |                                         |
| Benzo(a)anthracene               | 0.2       | nd       |          | . nd          |            |                                       |                                         |
| Chrysene                         | 0.2       | nd       |          | nd            |            |                                       |                                         |
| Bis (2-ethylhexyl) phthalate     | 2.0       | nd       |          | nd            |            |                                       |                                         |
| Di-n-octyl phthalate             | 2.0       | nd       | 78%      | nd            |            |                                       |                                         |
| Benzo(b)fluoranthene             | 0.2       | nd       |          | nd            |            |                                       |                                         |
| Senzo(k)fluoranthene             | 0.2       | nd       |          | nd            |            |                                       |                                         |
| Benzo(a)pyrene                   | 0.2       | nd       | 73%      | nd            |            |                                       |                                         |
| Dibenzo(a,h)anthracene           | 0.2       | nd       |          | nd            |            |                                       |                                         |
| Benzo(ghi)perylene               | 0.2       | nd       |          | nd nd         |            |                                       |                                         |
| ndeno(1,2,3-cd)pyrene            | 0.2       | nd       |          | nd            |            | 4. 4                                  |                                         |
| ndenb(1,2,5-cd/pyrene            | <u> </u>  |          |          |               |            | · · · · · · · · · · · · · · · · · · · | , , , , , , , , , , , , , , , , , , , , |
| Surrogate recoveries             |           |          | 11004    | 4540/         | 84%        | 83%                                   |                                         |
| 2-Fluorophenol                   |           | 85%      | 110%     | 121%          | 88%        | 86%                                   |                                         |
| Phenol-d6                        |           | 103%     | 115%     | 126%          | 86%        | 83%                                   |                                         |
| Nitrobenzene-d5                  |           | 126%     | 134%     | 91%           | 86%<br>89% | 83%<br>87%                            |                                         |
| 2-Fluorobiphenyl                 | •         | 86%      | 126%     | 89%           |            |                                       |                                         |
| 2,4,6-Tribromophenol             | •         | 63%      | 41%      | 50%           | 50%        | 52%<br>73%                            |                                         |
| 4-Terphenyl-d14                  |           | 76%      | 124%     | 72%           | 75%        | 73%                                   |                                         |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150%

ESN Environmental

Olympia: (360) 459-4670 Bellevue: (360) 957-9872

# CHAIN-OF-CUSTODY RECORD

| CLIENT: Mashington Department of Fish of Willist                          | DATE: 1919/22 PAGE 1 OF                         |                                                   |
|---------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| ADDRESS: 7315 . W. Dr. Enery Plan Galen Under, 144 49-26                  | PROJECT NAME: Williams Like Rebuts              |                                                   |
| PHONE: (591) 212-160, FAX: (29) 9.24-244/                                 | LOCATION: Williams Case Stevens Co. WA.         |                                                   |
| PROJECT                                                                   | COLLECTOR: SEE 1919 (A) JAINS COLLECTION (1913) | 0/6/01                                            |
| 18/2/2                                                                    | 100 100 100 100 100 100 100 100 100 100         | Total Number of Containers Laboratory Note Number |
| X                                                                         |                                                 |                                                   |
|                                                                           | ,                                               |                                                   |
|                                                                           |                                                 |                                                   |
| X X                                                                       | 100 th 11                                       |                                                   |
| X                                                                         | surrelieber.                                    |                                                   |
|                                                                           |                                                 |                                                   |
|                                                                           |                                                 |                                                   |
|                                                                           |                                                 |                                                   |
| G                                                                         |                                                 |                                                   |
| 10.                                                                       |                                                 |                                                   |
|                                                                           |                                                 |                                                   |
| 12                                                                        |                                                 |                                                   |
| 13.                                                                       |                                                 |                                                   |
| <b>4</b>                                                                  |                                                 |                                                   |
| 15.                                                                       |                                                 |                                                   |
| 16.                                                                       |                                                 |                                                   |
|                                                                           |                                                 |                                                   |
| 1.8                                                                       |                                                 |                                                   |
| RELINGUISHED BY (Signature) DATE/TIME RECEDURED BY (Styplature) DATE/TIME | SAMPLE RECEIPT LABORATORY NOTES:                |                                                   |
| 16.13. CF MILLAND 10.13.08                                                | TOTAL NUMBER OF CONTAINERS                      |                                                   |
| BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME                | CHAIN OF CUSTODY SEALS YANNA                    |                                                   |
|                                                                           | SEALS INTACT? YMMIA                             |                                                   |
| SAMPLE DISPOSAL INSTRUCTIONS                                              | RECEIVED GOOD COND, COLD                        |                                                   |
| Pickup                                                                    | NOTES: 24 HR 4                                  | 48 HR 5 DAY                                       |

WA Dept. of Fish & Wildlift WILLIAMS LAKE REHAB PROJECT Stevens Co., Washingtor

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com (360) 459-3432 Fax

Analytical Results

| Analytical Results                                     |            |             |             |               |              |             |
|--------------------------------------------------------|------------|-------------|-------------|---------------|--------------|-------------|
| 8260, µg/L (Water)                                     | Reporting  | MTH BLK     | LCS         | Williams Lake | MS           | MSD         |
| Date analyzed                                          | Limits     |             |             |               |              |             |
| Dichlorodifluoromethane                                | 1.0        | nd          |             | nd            |              |             |
| Chloromethane                                          | 1.0        | . nd        |             | nd            |              |             |
| Vinyl chloride                                         | 0.2        | nd          |             | nd            |              |             |
| Bromomethane                                           | 1.0        | , nd        |             | · nd          |              |             |
| Chloroethane                                           | 1.0        | nd          |             | nd            |              |             |
| Trichlorofluoromethane                                 | 1.0        | nd          |             | nd            |              |             |
| Acetone                                                | 10.0       | nd nd       |             | nd            |              |             |
| 1,1-Dichloroethene                                     | 1.0        | nd          |             | nd            |              |             |
| Methylene chloride                                     | 1.0        | nd          |             | nd            | •            |             |
| Methyl-t-butyl ether (MTBE)                            | 1.0        | nd          |             | nd            |              |             |
| rans-1,2-Dichloroethene                                | 1.0        | nd          |             | nd            |              |             |
| 1,1-Dichloroethane                                     | 1.0        | nd          |             | nd .          |              |             |
| 2-Butanone (MEK)                                       | 10.0       | nd          |             | nd            |              |             |
| cis-1,2-Dichloroethene                                 | 1.0        | nd          |             | nd            |              | •           |
| 2,2-Dichloropropane                                    | 1.0        | nd          |             | nd            |              |             |
| Chloroform                                             | 1.0        | nd .        |             | , nd          | ,            |             |
| Bromochloromethane                                     | 1.0        | nd          |             | nd            |              |             |
|                                                        | 1.0        | nd          |             | nd            |              |             |
| I,1,1-Trichloroethane                                  | 1.0        | nd          |             | nd            |              |             |
| I,2-Dichloroethane (EDC)                               | 1.0        | nd          |             | nd            |              |             |
| I,1-Dichloropropene                                    |            |             |             |               |              |             |
| Carbon tetrachloride                                   | 1.0<br>1.0 | nd          | 101%        | nd<br>nd      | 100%         | 100%        |
| Benzene                                                |            | nd          |             |               | 93%          | 93%         |
| Trichloroethene (TCE)                                  | 1.0        | nd          | 93%         | nd            | 93%          | 93%         |
| ,2-Dichloropropane                                     | 1.0        | nd          |             | nd            |              |             |
| Dibromomethane                                         | 1.0        | nd          |             | nd            |              |             |
| Bromodichloromethane                                   | 1.0        | nd          |             | nd            |              |             |
| -Methyl-2-pentanone (MIBK)                             | 1.0        | nd          |             | nd            |              |             |
| is-1,3-Dichloropropene                                 | 1.0        | nd          |             | nd            |              |             |
| oluene                                                 | 1.0        | nd          | 116%        | nd            | 116%         | 116%        |
| rans-1,3-Dichloropropene                               | 1.0        | nd          |             | nd            |              |             |
| ,1,2-Trichloroethane                                   | 1.0        | nd          |             | nd nd         |              |             |
| -Hexanone                                              | 1.0        | nd          |             | nd            |              |             |
| ,3-Dichloropropane                                     | 1.0        | nd          |             | nd ·          |              |             |
| Dibromochloromethane                                   | . 1.0      | nd          |             | nd            |              |             |
| etrachloroethene (PCE)                                 | 1.0        | nd          | 78%         | nd            | 130%         | 142%        |
| ,2-Dibromoethane (EDB)                                 | 1.0        | nd ·        |             | nd            |              |             |
| hlorobenzene                                           | 1.0        | nd          |             | nd            |              |             |
| ,1,1,2-Tetrachloroethane                               | 1.0        | nd          |             | nd            |              |             |
| thylbenzene                                            | 1.0        | nd          | 124%        | nd            | 124%         | 123%        |
| ylenes                                                 | 3.0        | nd          | 123%        | · nd          | 125%         | 120%        |
| tyrene                                                 | 1.0        | - nd        |             | nd            |              |             |
| romoform                                               | 1.0        | nd          |             | nd            |              |             |
| ,1,2,2-Tetrachloroethane                               | 1.0        | nd          |             | nd .          |              |             |
| opropylbenzene                                         | 1.0        | nd          |             | nd ·          |              |             |
| ,2,3-Trichloropropane                                  | 1.0        | nd          |             | nd '          |              |             |
| romobenzene                                            | 1.0        | nd          |             | nd            |              |             |
| -Propylbenzene                                         | 1.0        | nd          |             | nd .          |              |             |
| -Chlorotoluene                                         | 1.0        | nd          |             | nd            | •            |             |
| -Chlorotoluene<br>-Chlorotoluene                       | 1.0        | nd .        |             | nd            |              |             |
|                                                        | 1.0        | nd          |             | nd            |              |             |
| 3,5-Trimethylbenzene                                   | 1.0        | nd<br>nd    |             | nd            |              |             |
| rt-Butylbenzene                                        |            |             |             |               |              |             |
| 2,4-Trimethylbenzene                                   | 1.0        | nd ·        |             | nd            |              |             |
| ec-Butylbenzene                                        | 1.0        | nd          |             | nd            |              |             |
| 3-Dichlorobenzene                                      | 1.0        | nd          |             | nd            |              |             |
| 4-Dichlorobenzene                                      | 1.0        | nd          |             | nd<br>        |              |             |
| opropyltoluene                                         | 1.0        | nd          |             | nd            |              |             |
| 2-Dichlorobenzene                                      | 1.0        | nd          |             | nd            |              |             |
| Butylbenzene                                           | 1.0        | nd          |             | nd            |              |             |
| 2-Dibromo-3-Chloropropane                              | 1.0        | nd          |             | nd            |              |             |
| 2,4-Trichlorobenzene                                   | 1.0        | nd          |             | , nd          |              |             |
| aphthalene                                             | 1.0        | - nd        | 85%         | nd            |              |             |
| exachloro-1,3-butadiene                                | 1.0        | nd          |             | nd            |              |             |
| 2,3-Trichlorobenzene                                   | . 1.0      | nd          |             | nd .          | ***          |             |
|                                                        |            |             |             |               | •            |             |
|                                                        |            |             |             |               |              |             |
| progate recoveries                                     |            | 88%         | 85%         | 110%          | 101%         | 98%         |
| urrogate recoveries<br>bromofluoromethane<br>bluene-d8 |            | 88%<br>104% | 85%<br>107% | 110%<br>110%  | 101%<br>121% | 98%<br>118% |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

|     |        |     |   |     | - 7 |     |
|-----|--------|-----|---|-----|-----|-----|
|     |        |     |   | • . |     |     |
| •   |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     | • |     |     |     |
| •   |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
| ·   |        |     |   |     |     | * * |
|     |        |     | • |     | •   |     |
|     | N.     |     |   |     | ·   |     |
| •   | •      |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     | • •    |     |   |     |     |     |
| · · |        |     |   |     |     | •   |
| . • |        |     |   |     |     |     |
|     |        |     | • |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   | • • |     |     |
|     |        |     |   | •   |     |     |
|     |        | •   |   |     | •   |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        | •   |   |     |     |     |
|     |        | · · |   |     | •   |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     | •   |
|     |        |     |   |     |     | •   |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     | , |     | •   |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     | •   |
|     |        |     |   |     |     | ٠.  |
|     | •      |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     | •      |     |   |     |     |     |
|     |        | ·   |   | •   |     |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     |     |     |
|     |        | ,   |   |     |     |     |
| •   |        |     |   | •   |     | •   |
|     |        |     |   |     |     |     |
|     |        | 4   | • |     |     |     |
|     |        |     |   | •   | •   |     |
|     | _      | •   |   |     |     |     |
|     | •      |     |   |     |     |     |
|     | 4.4    | •   |   |     | •   |     |
|     |        |     |   | •   |     |     |
|     |        |     |   |     | •   |     |
|     |        |     |   |     |     |     |
|     |        | •   |   |     |     |     |
|     |        | •   |   |     |     |     |
|     |        | •   |   |     |     |     |
|     |        |     |   |     | -   |     |
|     |        |     |   |     |     |     |
|     |        |     |   |     | •   |     |
|     | ·<br>· |     |   |     |     |     |
|     | ·<br>· |     |   |     |     |     |

Washington Department of Fish & Wildlif WILLIAMS LAKE REHAB PROJECT Stevens County, Washingtor

ESN Northwest 1210 Eastside Street SE Suite 2<sup>o</sup> Olympia, WA 98501 (360) 459-4670 (360) 459-3<sup>c</sup> lab@esnnw.com

| 8270, μg/L                        |           | MTH BLK  | LCS      | Williams Lake | MS       | MSD      | RPD  |
|-----------------------------------|-----------|----------|----------|---------------|----------|----------|------|
| Matrix                            | Water     | Water    | Water    | Water         | Water    | Water    | \    |
| Date extractec                    | Reporting | 12/17/08 | 12/17/08 | 12/17/08      | 12/17/08 | 12/17/08 |      |
| Date analyzec                     | Limits    | 12/17/08 | 12/17/08 | 12/17/08      | 12/17/08 | 12/17/08 |      |
| Pyridine                          | 2.0       | nd       |          | nd            |          |          |      |
| Aniline                           | 2.0       | nd       | •        | nd            |          |          |      |
| Phenol                            | 2.0       | nd       |          | nd nd         | 94%      | 93%      | 1%   |
| 2-Chloropheno                     | 2.0       | nd       |          | nd nd         | 115%     | 111%     | 4%   |
| Bis (2-chloroethyl) ethe          | 2.0       | nd       |          | , nd          | 11370    | 11170    | 7.0  |
| 1,3-Dichlorobenzene               | 2.0       | nd       |          | nd            |          |          |      |
| 1,4-Dichlorobenzene               | 2.0       | nd nd    | 103%     | nd            | 101%     | 102%     | 1%   |
| 1,2-Dichlorobenzene               | 2.0       | nd<br>nd | 10376    | nd            | 10176    | 10270    | 1 70 |
|                                   | 2.0       | nd       |          | nd            |          |          |      |
| N-methylpyrrolidons Benzyl alcoho | 2.0       |          |          | nd            |          |          |      |
|                                   |           | nd       |          |               |          |          |      |
| 2-Methylphenol (o-cresol          | 2.0       | nd       |          | nd            |          | •        |      |
| Bis (2-chloroisopropyl) ethe      | 10.0      | nd       |          | nd            |          |          |      |
| 3,4-Methylphenol (m,p-cresol      | 2.0,      | nd -     |          | nd            |          |          | ٠.   |
| Hexacholorethane                  | 2.0       | nd       |          | nd            | 40000    | 4000/    | 407  |
| N-Nitroso-di-n-propylamine        | 2.0       | nd       |          | nd            | 123%     | 122%     | 1%   |
| Nitrobenzene                      | 2.0       | nd       |          | nd            | •        |          |      |
| Isophorone                        | 2.0       | nd       |          | nd            |          |          |      |
| 2-Nitropheno                      | 10.0      | nd       |          | nd            |          |          |      |
| 4-Nitropheno                      | 10.0      | nd       |          | nd            |          |          |      |
| 2,4-Dimethylpheno                 | 2.0       | nd       |          | nd            | 107%     | 107%     | 0%   |
| Bis (2-chloroethoxy) methan       | 2.0       | nd       |          | nd            |          |          |      |
| 2,4-Dichloropheno                 | 10.0      | nd       |          | nd            |          |          |      |
| 1,2,4-Trichlorobenzen€            | 2.0       | nd       |          | nd            | 116%     | 118%     | 2%   |
| Naphthalene                       | 2.0       | nd       |          | nd            |          |          |      |
| 4-Chloroaniline                   | 10.0      | nd       |          | nd            |          |          |      |
| Hexachlorobutadiene               | 2.0       | nd       | 123%     | nd            |          |          |      |
| 4-Chloro-3-methylphena            | 10.0      | nd       |          | - nd          | 81%      | 81%      | 0%   |
| 2-Methylnapthalene                | 2.0       | nd       |          | nd            |          |          |      |
| 1-Methylnapthalene                | 2.0       | nd       |          | nd            |          |          |      |
| Hexachlorocyclopentadien          | 2.0       | nd       |          | nd            | * •      |          |      |
| 2,4,6-Trichloropheno              | 10.0      | nd       |          | nd            |          |          |      |
| 2,4,5-Trichloropheno              | 10.0      | nd       |          | nd            |          |          |      |
| 2-Chloronaphthalene               | 2.0       | nd       |          | nd            |          |          |      |
| 2-Nitroaniline                    | 10.0      | nd       |          | nd            |          |          |      |
| 1,4-Dinitrobenzene                | 10.0      | nd       | _        | nd            |          |          |      |
| Dimethylphthalate                 | 2.0       | nd       |          | nd            |          |          |      |
| Acenaphthylene                    | 0.2       | nd       |          | nd            |          |          |      |
| 1,3-Dinotrobenzene                | 10.0      | nd       |          | nd            |          |          |      |
| 2,6-Dinitrotoluene                | 2.0       | nd       |          | nd            |          |          |      |
| 1,2-Dinitrobenzene                | 2.0       | nd       |          | nd            |          |          |      |
| Acenaphthene                      | 0.2       | nd       | 131%     | nd            | 98%      | 97%      | 1%   |
| 3-Nitroaniline                    | 10.0      | nd       |          | nd            |          |          |      |
| Dibenzofuran                      | 2.0       | nd       |          | nd            |          |          |      |
| 2,4-Dinitrotoluene                | 2.0       | nd       |          | nd            | 88%      | 87%      | 1%   |
| 2,3,4,6-Tetrachloropheno          | 2.0       | nd       |          | nd            |          |          |      |
| 2,3,5,6-Tetrachloropheno          | 2.0       | nd       |          | nd            |          |          |      |
| 2,4-Dinitropheno                  | 10.0      | nd       |          | nd            |          |          |      |
| _, 0 priorio                      |           |          |          |               |          |          |      |

Washington Department of Fish & Wildlif WILLIAMS LAKE REHAB PROJECT Stevens County, Washingtor

ESN Northwest 1210 Eastside Street SE Suite 2<sup>1</sup> Olympia, WA 98501 (360) 459-4670 (360) 459-3<sup>2</sup> lab@esnnw.com

Analytical Results

| 8270, µg/L                                       | 3.        | MTH BLK     | LCS      | Williams Lake | MS       | MSD      | RPD          |
|--------------------------------------------------|-----------|-------------|----------|---------------|----------|----------|--------------|
| Matrix                                           | Water     | Water       | Water    | Water         | Water    | Water    |              |
| Date extractec                                   | Reporting | 12/17/08    | 12/17/08 | 12/17/08      | 12/17/08 | 12/17/08 | <del> </del> |
| Date analyzec                                    | Limits    | 12/17/08    | 12/17/08 | 12/17/08      | 12/17/08 | 12/17/08 |              |
| 4-Chlorophenylphenylethe                         | 2.0       | nd          |          | nd            |          |          |              |
| Diethylphthalate                                 | 2.0       | nd          |          | . nd          |          |          |              |
| 4-Nitroaniline                                   | · 10.0    | nd          |          | nd            |          | •        |              |
| 4,6-Dinitro-2-methylpheno                        | 10.0      | nd          |          | nd            |          |          |              |
| N-nitrosodiphenylamine                           | 2.0       | nd          | 125%     | nd            |          |          |              |
| Azobenzene                                       | 2.0       | nd          |          | . nd          |          |          |              |
| 4-Bromophenylphenylethe                          | 2.0       | nd          |          | nd            |          | •        |              |
| Hexachlorobenzene                                | 2.0       | nd          |          | ' nd          | • •      |          |              |
| Pentachloropheno                                 | 10.0      | nd          |          | nd            |          |          |              |
| Phenanthrene                                     | 0.2       | nd          |          | nd            |          |          |              |
| Anthracene                                       | 0.2       | nd          |          | nd            |          |          |              |
| Carbazole                                        | 2.0       | nd          |          | nd            |          |          |              |
| Di-n-butylphthalate                              | 2.0       | nd          | •        | · nd          |          |          |              |
| Fluoranthene                                     | 0.2       | nd          | 127%     | nd            |          |          |              |
| Pyrene                                           | 0.2       | nd          |          | nd            | 89%      | 86%      | 3%           |
| Butylbenzylphthalate                             | 2.0       | nd          |          | nd            |          |          |              |
| Bis(2-ethylhexyl) adipate                        | 2.0       | nd          |          | nd            |          |          |              |
| Benzo(a)anthracene                               | 0.2       | nd          |          | nd            |          |          |              |
| Chrysene                                         | 0.2       | nd          |          | · nd          |          |          |              |
| Bis (2-ethylhexyl) phthalati                     | 2.0       | nd          |          | nd            |          | •        |              |
| Di-n-octyl phthalate                             | 2.0       | nd          | 86%      | nd            |          |          |              |
| Benzo(b)fluoranthene                             | 0.2       | nd          |          | nd            |          |          |              |
| Benzo(k)fluoranthene                             | 0.2       | nd          |          | nd            |          |          |              |
| Benzo(a)pyrene                                   | 0.2       | nd          | 82%      | nd            |          |          |              |
| Dibenzo(a,h)anthracene                           | 0.2       | nd          |          | nd            |          |          |              |
| Benzo(ghi)perylene                               | 0.2       | nd          |          | nd            |          |          |              |
| Indeno(1,2,3-cd)pyrene                           | 0.2       | nd          |          | nd            | •        | *        |              |
| Comments and and and and and and and and and and |           |             |          |               |          | •        |              |
| Surrogate recoveries 2-Fluoropheno               |           | 92%         | 112%     | 104%          | 89%      | 91%      |              |
| Phenol-d6                                        |           | 95%         | 125%     | 89%           | 96%      | 91%      |              |
| Nitrobenzene-da                                  |           | 95%<br>111% | 125%     | 89%           |          |          |              |
|                                                  |           | 111%<br>86% |          |               | 92%      | 93%      |              |
| 2-Fluorobipheny                                  |           |             | 125%     | 83%           | 81%      | 84%      |              |
| 2,4,6-Tribromopheno                              |           | 63%         | 127%     | 65%           | 78%      | 78%      |              |
| 4-Terphenyl-d14                                  |           | 85%         | 82%      | 85%           | 79%      | 78%      |              |

#### Data Qualifiers and Analytical Comment

nd - not detected at listed reporting limit

Acceptable Recovery limits: 2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150%

#### POST TREATMENT DISCHARGE MONITORING REPORT

1. Lake Name: Starzman Lakes

2. County: Okanogan

3. Section: 36 Township: 32N Range: 24E

4. Date of Treatment: Oct 23, 2008

- 5. Purpose of Treatment: Starzman Lakes are good productive waters that provide a small lakes angling experience for float fishermen as well as shore anglers. Surveys indicated illegal plants of bluegill sunfish, which have compromised the trout fishery in recent years. Competition from bluegill has reduced the average size of yearling trout from 12 inches to 9 inches. Treatment was necessary to restore the lakes to trout only waters.
- 6. Name of Licensed Applicator: Robert Jateff
- 7. Lake Description: Surface Acres: 18. Volume: 252 Acre Feet:

Maximum Depth: 26. Average Depth: 14

8. Stream Description: Width: N/A, Length: N/A

Flow Rate of Stream/Outlet (cu. ft. per sec.): N/A

- 9. Name of Fish Toxicant Product Used: CFT Legumine Liquid
- 10. Description of Treatment Method: Liquid applied via air by helicopter and on ground by backpack sprayer, and a drip can placed in spring at marsh area in upper lake.
- 11. Quantity of Fish Toxicant used: 84 gallons
- 12. Concentration of rotenone in formulated Rotenone product: 5%
- 13. Concentration of active rotenone in water: 1.0 ppm product; 50 ppb a.i.

14. Water conditions/quality: Water sampling done within 24hrs pre-treatment:

| Depth (m) | Temperature °C | pН   | DO (ppm)    |
|-----------|----------------|------|-------------|
| 0.7       | 11.80          | 8.50 | 6.85        |
| 1.7       | 11.27          | 8.50 | 6.66        |
| 2.6       | 11.11,         | 8.48 | 6.56        |
| 3.6       | 11.07          | 8.49 | 6.59        |
| 4.6       | 11.05          | 8.49 | <b>6.41</b> |
| 5.5       | 11.02          | 8.48 | 6.38        |
| 6.9       | 10.90          | 8.49 | 6.41        |

- 15. Detoxification of rotenone treated water (if required): Description of detoxification methods/equipment; potassium permanganate application rate (pounds per hour); flow rate of stream/outlet (cu. ft. per sec.); estimate of average concentration (ppm): N/A
- 16. Description of lake inlets(s)/outlet(s) and any temporary water control measures (if required): N/A
- 17. Period of Toxicity: 4-6weeks
- 18. Eradicated fish species: bluegill sunfish and rainbow trout
- 19. Results of pre and post treatment monitoring: Prior to the treatment, the lake was sampled for various parameters including temperature, pH, and zooplankton. Post sampling included VOC and Semi-VOC within 24 hours of treatment. Taking of the samples required for the "four weeks post-treatment" were delayed until December 3, 2008 due to weather and road conditions. No VOC, semi-VOC, or N-methylpyrrolidone components were detected in either sampling period.
- 20. Impact on non-target organisms: None observed
- 21. Brief description of treatment/detoxification and other comments: The treatment began at 1100 on Oct 23, 2008 and was completed at 1200 on the same day based on a concentration of 1ppm. The two lakes were aerial sprayed by helicopter and took less than an hour to complete. Spot spraying by backpack sprayer was also done in areas that the helicopter could not reach. A drip can was placed in the spring area on the upper lake for one hour. Fish started to stress almost immediately as hundreds of juvenile bluegill surfaced in both lakes. All age classes of fish were evident from ½ inch up to 7-inch adults. No more than a dozen age 2+ rainbow trout were noted in either lake all of which were in the 12-13 inch class. By the next day there were thousands of young-of-the-year bluegills in both the upper and lower lake. No fish were observed still alive, which indicated a good efficacy on the treatment. A bioassay was conducted 4 weeks post treatment with all fish surviving. During December 2008, cutthroat trout fingerlings were restocked in each lake to assess post-rehabilitation overwinter survival.

Washington Dept. of Fish & Wildlife STARZMAN LAKES REHABILITATION PROJECT Client Project #10-08 Brewster, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 lab@esnnw.com (360) 459-3432 Fax

Analytical Results

| 8260, μg/L (Water)                                |            | ATH BLK    | LCS   | Starzman | MS       | MSD      | RPE  |
|---------------------------------------------------|------------|------------|-------|----------|----------|----------|------|
| Date analyzed                                     | Limits     |            |       |          | 10/15/08 | 10/15/08 |      |
| Dichlorodifluoromethane                           | 1.0        | nd         |       | nd       | **       |          |      |
| Chloromethane                                     | 1.0        | nd         |       | nd       |          |          |      |
| Vinyl chloride                                    | 0.2        | nd         |       | . nd     |          |          |      |
| Bromomethane                                      | 1.0        | nd         |       | nd       |          | •        |      |
| Chloroethane                                      | 1.0        | nd .       |       | nd       | •        |          |      |
| Trichlorofluoromethane                            | 1.0        | nd .       |       | nd       |          |          |      |
| 1,1-Dichloroethene                                | 1.0        | nd         | 179%  | · nd     | 141%     | 91%      | 43%  |
| Methylene chloride                                | 1.0        | nd         |       | nd       |          |          |      |
| trans-1,2-Dichloroethene                          | 1.0        | nd         | *     | nd       | -        |          |      |
| 1,1-Dichloroethane                                | 1.0        | nd         |       | nď       |          |          |      |
| cis-1,2-Dichloroethene                            | 1.0        | nd         |       | nd       |          |          |      |
| 2,2-Dichloropropane                               | 1.0        | nd         |       | nd       |          |          |      |
| Chloroform                                        | 1.0        | nd         |       | nd       | •        |          |      |
| Bromochloromethane                                | 1.0        | nd         |       | nd.      |          |          |      |
| 1,1,1-Trichloroethane                             | 1.0        | nd         |       | nd       |          |          |      |
| 1,2-Dichloroethane (EDC)                          | 1.0        | nd         |       | nd       |          |          |      |
| 1,1-Dichloropropene                               | 1.0        | nd         |       | nd       |          |          |      |
| Carbon tetrachloride                              | 1.0        | nd         |       | nd       |          |          |      |
| Benzene                                           | 1.0        | nd         | 116%  | nd       | 116%     | 105%     | 10%  |
| Trichloroethene                                   | 1.0        | nd         | 131%  | nd       | 120%     | 113%     | 6.0% |
| 1,2-Dichloropropane                               | 1.0        | nd         |       | nd       |          |          |      |
| Dibromomethane                                    | 1.0        | nd         |       | nd       |          |          |      |
| Bromodichloromethane                              | . 1.0      | nd         |       | nd-      |          |          |      |
| sis-1,3-Dichloropropene                           | 1.0        | nd         |       | , nd     | 000/     | 0.557    | 7.00 |
| Toluene                                           | 1.0        | nd         | 100%  | nd       | 92%      | 85%      | 7.9% |
| rans-1,3-Dichloropropene                          | 1.0        | nd         |       | nd       |          |          |      |
| 1,1,2-Trichloroethane                             | 1.0        | nd         |       | nd       |          |          |      |
| ,3-Dichloropropane                                | 1.0        | nd         |       | nd       |          | •        |      |
| Dibromochloromethane                              | 1.0        | nd         |       | . nd     |          |          |      |
| etrachloroethene                                  | 1.0        | nd         |       | nd       | •        |          | •    |
| ,2-Dibromoethane (EDB)                            | 1.0        | nd         | 44004 | nd<br>   | 4070/    | 0007     | 8.8% |
| Chlorobenzene                                     | 1.0        | nd         | 113%  | nd<br>   | 107%     | 98%      | 0.07 |
| ,1,1,2-Tetrachloroethane                          | 1.0        | nd         |       | nd       |          |          |      |
| thylbenzene                                       | 1.0        | nd<br>     |       | nd       |          |          |      |
| ylenes                                            | 3.0        | nd         |       | nd<br>nd | •        |          |      |
| Styrene                                           | 1.0        | nd         |       | nd       |          |          |      |
| romoform                                          | 1.0        | nd         |       | nd       |          | •        | •    |
| ,1,2,2-Tetrachloroethane                          | 1.0        | nd -<br>nd |       | nd       |          |          |      |
| sopropylbenzene                                   | 1.0<br>1.0 | nd         |       | nd       |          |          |      |
| ,2,3-Trichloropropane                             | 1.0        | nd         |       | nd       |          |          |      |
| romobenzene                                       | 1.0        | nd         |       | nd       |          |          |      |
| -Propylbenzene                                    | 1.0        | nd         |       | nd       |          |          |      |
| -Chlorotoluene                                    | 1.0        | nd         |       | nd       | •        |          |      |
| -Chlorotoluene                                    | 1.0        | nd         |       | nd       |          |          |      |
| 3,5-Trimethylbenzene                              | 1.0        | nd         |       | nd       |          |          |      |
| ert-Butylbenzene                                  | 1.0        | nd         |       | nd       | •        |          |      |
| 2,4-Trimethylbenzene                              | 1.0        | nd         |       | nd       |          |          |      |
| ec-Butylbenzene<br>,3-Dichlorobenzene             | 1.0        | nd         |       | nd       |          |          |      |
|                                                   | 1.0        | nd         |       | nd       |          |          |      |
| 4-Dichlorobenzene<br>opropyltoluene               | 1.0        | nd         |       | nd       |          |          |      |
| 2-Dichlorobenzene                                 | 1.0        | nd         |       | nd       |          |          |      |
|                                                   | 1.0        | nd .       |       | nd       |          |          |      |
| Butylbenzene<br>2-Dibromo-3-Chloropropane         | 1.0        | nd         |       | nd       |          |          |      |
| 2-Dipromo-3-Chloropropane<br>2,4-Trichlorobenzene | 1.0        | nd .       |       | nd       |          |          |      |
|                                                   | 1.0        | nd .       |       | nd .     |          |          |      |
| aphthalene                                        | 1.0        | nd         |       | nd       |          |          |      |
| exachloro-1,3-butadiene                           | 1.0        | nd         |       | nd .     |          |          |      |
| 2,3-Trichlorobenzene                              | 1,0        | ilu .      |       |          |          | ,        |      |
| urrogate recoveries                               |            | 10000      |       |          | 4000/    | 0007     |      |
| L                                                 |            | 120%       | 118%  | 124%     | 109%     | 98%      |      |
| bromofluoromethane<br>bluene-d8                   |            | 93%        | 96%   | 93%      | 93%      | 92%      |      |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81030.1

Client:

WDFW

Client Job Name:

Starzman Lakes Rehab

| 8270, μg/L                    |           | MTH BLK  | LCS      | Starzman Lake | MS       | MSD      | RPD                                   |
|-------------------------------|-----------|----------|----------|---------------|----------|----------|---------------------------------------|
| Matrix                        | Water     | Water    | Water    | Water         | Water    | Water    |                                       |
| Date extracted                | Reporting | 11/03/08 | 11/03/08 | 10/31/08      | 11/03/08 | 11/03/08 | · · · · · · · · · · · · · · · · · · · |
| Date analyzed                 | Limits    | 11/03/08 | 11/03/08 | 11/03/08      | 11/03/08 | 11/03/08 |                                       |
|                               |           |          | ,        |               |          |          |                                       |
| Pyridine                      | 2.0       | nd       |          | nd<br>        |          |          |                                       |
| Aniline                       | 2.0       | nd       |          | nd            | 070/     | 040/     | 407                                   |
| Phenol                        | 2.0       | nd       |          | nd            | 87%      | 91%      | 4%                                    |
| 2-Chlorophenol                | 2.0       | . nd     |          | nd            | 107%     | 113%     | 5%                                    |
| Bis (2-chloroethyl) ether     | 2.0       | nd       |          | nd            |          |          |                                       |
| 1,3-Dichlorobenzene           | 2.0       | nd       |          | nd            |          |          |                                       |
| 1,4-Dichlorobenzene           | 2.0       | nd       | 119%     | , nd          | 102%     | 102%     | 0%                                    |
| 1,2-Dichlorobenzene           | 2.0       | nd       |          | nd            |          |          |                                       |
| N-methylpyrrolidone           | 2.0       | nd       |          | nd            |          |          |                                       |
| Benzyl alcohol                | 2.0       | nd       |          | nd            |          |          |                                       |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |          | nd            |          |          |                                       |
| Bis (2-chloroisopropyl) ether | . 10.0    | nd       |          | nd            |          |          |                                       |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd       |          | nd            |          | •        |                                       |
| Hexacholorethane              | 2.0       | nd       |          | nd            |          |          |                                       |
| N-Nitroso-di-n-propylamine    | 2.0       | nd       | •        | nd            | 116%     | 115%     | 1%                                    |
| Nitrobenzene                  | 2.0       | nd       |          | nd            |          |          |                                       |
| Isophorone                    | 2.0       | nd       |          | nd            |          |          |                                       |
| 2-Nitrophenol                 | 10.0      | nd       |          | nd            |          |          |                                       |
| 4-Nitrophenol                 | 10.0      | nd       |          | nd            |          |          |                                       |
| 2,4-Dimethylphenol            | 2.0       | nd       |          | nd            | 89%      | 94%      | 5%                                    |
|                               | 2.0       | nd       |          | nd nd         | 0070     | 0.470    |                                       |
| Bis (2-chloroethoxy) methane  |           |          | •        | nd            |          |          |                                       |
| 2,4-Dichlorophenol            | 10.0      | nd       |          |               | 119%     | 119%     | 0%                                    |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | nd            | 11976    | 11970    | 0 76                                  |
| Naphthalene                   | 2.0       | nd       |          | nd            |          |          |                                       |
| 4-Chloroaniline               | 10.0      | nd       |          | nd            |          |          |                                       |
| Hexachlorobutadiene           | 2.0       | nd       | 119%     | nd            | 0004     |          | 00/                                   |
| 4-Chloro-3-methylphenol       | 10.0      | nd       |          | nd            | 68%      | 72%      | 6%                                    |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd            |          |          |                                       |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd            |          |          |                                       |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd            |          |          |                                       |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd            |          | •        |                                       |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd            |          | * .      |                                       |
| 2-Chloronaphthalene           | 2.0       | nd       |          | nd            |          |          |                                       |
| 2-Nitroaniline                | 10.0      | nd       |          | nd            |          |          |                                       |
| 1,4-Dinitrobenzene            | 10.0      | nd       |          | nd            |          |          | •                                     |
| Dimethylphthalate             | 2.0       | nd       |          | nd            |          |          |                                       |
| Acenaphthylene                | 0.2       | nd       |          | nd            |          |          |                                       |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          | nd .          |          |          |                                       |
| 2,6-Dinitrotoluene            | 2.0       | nd       |          | nd            |          |          |                                       |
| 1,2-Dinitrobenzene            | 2.0       | nd       |          | nd            |          |          |                                       |
| Acenaphthene                  | 0.2       | nd       | 111%     | nd            | 96%      | 98%      | 2%                                    |
| 3-Nitroaniline                | 10.0      | nd<br>nd | 11170    | nd            |          |          | _,,                                   |
| o-Nitroaniine<br>Dibenzofuran | 2.0       | nd       |          | nd            |          |          |                                       |
|                               |           |          |          | nd            | 84%      | 86%      | 2%                                    |
| 2,4-Dinitrotoluene            | 2.0       | nd       |          |               | U+ /0    | . 30 /6  | 2/0                                   |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd       |          | nd            |          | •        |                                       |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |          | nd            |          | • .      | ,                                     |
| 2,4-Dinitrophenol             | 10.0      | nd       |          | nd            |          |          | •                                     |
| Fluorene                      | 0.2       | nd       |          | nd            |          |          |                                       |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

\$81030.1

Client:

WDFW

Client Job Name:

Starzman Lakes Rehab

#### Analytical Results

| 8270, μg/L                   |           | MTH BLK  | LCS      | Starzman Lake | MS       | MSD      | RPD |
|------------------------------|-----------|----------|----------|---------------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water         | Water    | Water    |     |
| Date extracted               | Reporting | 11/03/08 | 11/03/08 | 10/31/08      | 11/03/08 | 11/03/08 |     |
| Date analyzed                | Limits    | 11/03/08 | 11/03/08 | 11/03/08      | 11/03/08 | 11/03/08 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd ·          |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd            |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       | *        | nd            |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd            |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 133%     | . nd          |          |          |     |
| Azobenzene                   | 2.0       | nd       | •        | nd            |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd            |          |          |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd            |          |          |     |
| Pentachlorophenol            | 10.0      | nd       |          | nd            |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | nd            |          |          |     |
| Anthracene                   | 0.2       | nd       |          | nd            |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd            |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd            |          |          |     |
| Fluoranthene                 | 0.2       | nd       | 120%     | nd            |          |          |     |
| Pyrene                       | 0.2       | nd       |          | nd            | 75%      | 76%      | 1%  |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd            |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | . nd     |          | nd            |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd            |          |          |     |
| Chrysene                     | 0.2       | nd       |          | nd            |          |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd            |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 73%      | nd            |          |          | •   |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd            |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       | 1        | nd            |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 71%      | nd            |          |          |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd            |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd            |          |          |     |
| Indeno(1,2,3-cd)pyrene       | . 0.2     | nd       |          | nd            |          |          |     |
|                              |           |          |          |               |          |          |     |
| Surrogate recoveries         |           |          |          |               |          |          |     |
| 2-Fluorophenol               |           | 91%      | 108%     | 121%          | 86%      | 86%      |     |
| Phenol-d6                    |           | 101%     | 114%     | 130%          | 92%      | 91%      |     |
| Nitrobenzene-d5              |           | 109%     | 131%     | 113%          | 90%      | 88%      |     |
| 2-Fluorobiphenyl             |           | 87%      | 131%     | 93%           | 86%      | 84%      |     |
| 2,4,6-Tribromophenol         |           | 41%      | 44%      | 80%           | 47%      | 49%      |     |
| 4-Terphenyl-d14              |           | 72%      | 119%     | 63%           | 70%      | 68%      |     |

#### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 %

Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159%

2,4,6- tribromopnenoi: 29-159% Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

|   |   | •  |   |   |    |   |     |   |   |   |
|---|---|----|---|---|----|---|-----|---|---|---|
|   |   | •  |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   | • |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   | •  |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   | • |
|   |   | •  |   |   | ·. |   |     |   |   |   |
| • |   |    |   |   |    | • |     |   |   | • |
|   |   |    |   |   |    |   |     |   |   |   |
|   | , |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    | • |     |   |   |   |
|   |   |    |   | • |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   | • |
|   | • | •  |   |   |    | • |     |   |   | ¥ |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   | •  |   | • |    |   |     |   |   |   |
|   |   | *• |   | • |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    | • |     |   |   |   |
|   |   |    |   | • |    |   |     |   |   |   |
|   | • |    |   |   |    | • |     |   |   |   |
|   |   |    |   |   |    | , |     | 4 |   | , |
|   |   |    |   | 5 |    |   |     |   |   |   |
|   |   |    |   |   |    |   | •   |   |   |   |
|   |   |    |   | : |    | • |     |   |   | * |
|   |   | •  |   | • |    |   |     |   |   |   |
|   |   |    |   |   |    |   | •   |   |   |   |
|   |   |    | 1 |   |    | • |     |   | • |   |
|   |   |    |   | • |    | • |     | , |   |   |
|   |   |    |   |   |    |   |     | • |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
| * |   |    |   |   |    |   |     |   |   |   |
|   |   | •  |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   | , |
|   |   |    |   |   |    |   |     |   | • |   |
|   |   |    |   |   |    | , |     |   |   |   |
|   |   |    |   |   |    | , |     |   |   |   |
|   |   |    |   |   |    | , |     |   |   |   |
|   |   |    |   |   |    | , |     |   |   |   |
|   |   |    |   |   |    | , |     |   |   |   |
|   |   |    |   |   |    | , |     |   |   |   |
|   |   |    |   |   |    |   | ••• |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |
|   |   |    |   |   |    |   |     |   |   |   |

Washington State Fish & Wildlife STARZMAN LAKES REHABILITATION PROJEC Brewster, Washingotn

| A | าล | lvti | cal | R | esi | d | ts |
|---|----|------|-----|---|-----|---|----|
|   |    |      |     |   |     |   |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reporting   | MTH BLK  | LCS      | MW-1     | MS       | MSD      | RPD      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|----------|----------|----------|----------|
| Date analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits      | 12/08/08 | 12/08/08 | 12/08/08 | 12/08/08 | 12/08/08 | 12/08/08 |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0         | m al     |          |          |          |          |          |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>1.0  | nd<br>nd |          | nd<br>nd |          |          |          |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2         | nd       |          | nd       |          |          |          |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0         | nd       |          | nd       |          |          |          |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0         | . nd     |          | nd       |          |          |          |
| Frichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0         | . nd     |          | nd       |          |          |          |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0        | nd       |          |          |          |          |          |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0         |          |          | nd       |          |          |          |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0         | nd<br>nd |          | nd       |          |          |          |
| Methyl-t-butyl ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0         |          | 000/     | nd       |          |          |          |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | nd       | 93%      | nd       |          |          |          |
| I.1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0         | nd       |          | nd       |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0         | nd       |          | nd       |          |          |          |
| 2-Butanone (MEK)<br>cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0        | ńd       |          | nd       |          |          |          |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1.0         | nd       |          | nd       |          |          |          |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0         | nd       |          | nd       |          |          |          |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0         | nd       |          | nd       |          |          |          |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0         | nd       |          | nd       |          |          |          |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0         |          |          | nd       |          |          |          |
| ,2-Dichloroethane (EDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0         | nd       |          | nd       |          |          |          |
| I,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0         | nd       |          | nd       | -        |          |          |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       |          | nd       |          |          |          |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0         | nd       | 113%     | nd       | 115%     | 112%     | 3%       |
| richloroethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       | 139%     | nd       |          |          |          |
| ,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0         | nd       |          | nd       |          |          |          |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0         | nd       |          | nd       |          | . '      |          |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       |          | nd       |          |          |          |
| l-Methyl-2-pentanone (MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0,        | nd       |          | nd       |          |          |          |
| is-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0         | nd       |          | nd       |          |          |          |
| oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0         | nd       | 106%     | nd       | 100%     | 100%     | 19       |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0         | nd       |          | nd       |          |          |          |
| ,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | . nd     |          | nd       |          |          |          |
| -Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0         | nd       |          | nd       |          |          |          |
| ,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0         | · nd     |          | nd       |          |          |          |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       |          | nd       |          |          |          |
| etrachloroethene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0         | nd       | 129%     | nd       |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | nd .     | 109%     |          |          |          |          |
| ,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0         |          | 109%     | nd<br>   |          |          |          |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0         | nď       |          | nd       |          |          |          |
| ,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0         | nđ       |          | nd       |          |          |          |
| thylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0         | nd       | 109%     | nd       | 100%     | 96%      | 4%       |
| Cylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0         | nd       | 101%     | nd       | 100%     | 93%      | 7%       |
| tyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0         | na       | •        | nd       |          |          |          |
| romoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0         | nd       |          | nd       |          |          |          |
| ,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0         | nd       |          | nd       |          |          |          |
| sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0         | nd       |          | nd       |          |          |          |
| ,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0         | nd .     |          | nd       |          |          |          |
| romobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0         | nd       |          | nd       |          |          |          |
| -Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0         | nd       |          | nd       |          |          |          |
| Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0         | nd       |          | nd       |          |          |          |
| Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0         | nd       |          | nd       |          |          |          |
| 3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       |          | nd       | *        | •        |          |
| ert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0         | nd       | ٠.       | nd       |          |          |          |
| 2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       | , ,      | nd       |          | •        |          |
| ec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0         | nd       |          | nd       |          |          |          |
| 3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0         | nd nd    |          | nd       |          |          |          |
| 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |          |          |          |          |          |
| opropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0         | nd       |          | nd       |          |          |          |
| opropylloluene<br>2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0         | nd       |          | nd       |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0         | nd       |          | .nd      |          |          |          |
| -Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0         | nd       |          | nd       |          |          |          |
| 2-Dibromo-3-Chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0         | nd       |          | nd       |          |          |          |
| 2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         | nd       |          | nd       |          |          |          |
| aphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0         | nd       |          | nd ·     |          |          |          |
| exachloro-1,3-butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0         | nd       |          | nd       |          |          |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0         | nd       |          | nd       |          |          |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0         | 110      |          | 110      |          |          |          |
| 2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0         |          |          | 110      |          |          |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> | 107%     | 116%     | 108%     | 109%     | 115%     |          |

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

| • |     |     |     |    |   |    |
|---|-----|-----|-----|----|---|----|
|   | · . |     |     |    |   |    |
| • |     |     |     |    |   |    |
|   |     |     |     | 4. |   |    |
|   |     |     |     |    |   |    |
| • | · · |     |     |    |   | •  |
|   |     |     |     |    |   |    |
|   |     | • : | • • |    |   |    |
|   |     |     | · · |    | • |    |
|   |     |     |     |    | • |    |
|   |     |     |     | •  |   |    |
|   | *   |     |     |    |   | ٠. |
|   |     |     |     | •  |   |    |
|   |     |     |     |    |   |    |
|   |     |     |     |    |   |    |
| · | ·   |     |     | :  |   |    |
|   |     | ·   |     |    |   |    |
|   |     |     |     |    |   |    |
|   |     |     |     |    |   |    |
|   |     |     |     |    |   |    |
|   |     | •   |     |    |   |    |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81208.2

Client:

WDFW

Client Job Name:

Starzman Lakes

| 8270, μg/L                    |           | MTH BLK  | LCS      | Starzman Lakes | MS       | MSD      | RPD         |
|-------------------------------|-----------|----------|----------|----------------|----------|----------|-------------|
| Matrix                        | Water     | Water    | Water    | Water          | Water    | Water    |             |
| Date extracted                | Reporting | 12/10/08 | 12/10/08 | 12/10/08       | 12/10/08 | 12/10/08 |             |
| Date analyzed                 | Limits    | 12/10/08 | 12/10/08 | 12/10/08       | 12/10/08 | 12/10/08 | <del></del> |
|                               |           |          |          |                |          |          |             |
| Pyridine                      | 2.0       | . nd     | •        | nd             |          |          |             |
| Aniline                       | 2.0       | nd       |          | nd             | 0004     | 000/     | 407         |
| Phenol                        | 2.0       | nd       |          | nd<br>         | 92%      | 93%      | 1%          |
| 2-Chlorophenol                | 2.0       | nd       |          | nd             | 111%     | 114%     | 3%          |
| Bis (2-chloroethyl) ether     | 2.0       | nd       |          | nd             |          |          |             |
| 1,3-Dichlorobenzene           | 2.0       | nd       | 4.004    | nd             | 40004    |          |             |
| 1,4-Dichlorobenzene           | 2.0       | nd       | 116%     | nd             | 103%     | 101%     | 2%          |
| 1,2-Dichlorobenzene           | 2.0       | nd       |          | nd             |          |          |             |
| N-methylpyrrolidone           | 2.0       | nd       |          | nd             |          |          |             |
| Benzyl alcohol                | 2.0       | nd       |          | nd             |          |          |             |
| 2-Methylphenol (o-cresol)     | 2.0       | . nd     |          | nd             |          |          |             |
| Bis (2-chloroisopropyl) ether | 10.0      | nd       |          | nd             |          |          |             |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd ,     |          | nd             |          |          |             |
| Hexacholorethane              | 2.0       | nd       |          | nd             |          |          | •           |
| N-Nitroso-di-n-propylamine    | 2.0       | nd       |          | nd             | 128%     | 124%     | . 3%        |
| Nitrobenzene                  | 2.0       | . nd     |          | · nd           |          |          | •           |
| Isophorone                    | 2.0       | nd       |          | nd             |          |          |             |
| 2-Nitrophenol                 | 10.0      | nd       |          | nd             |          |          | •           |
| 4-Nitrophenol                 | 10.0      | nd       |          | nd             |          |          |             |
| 2,4-Dimethylphenol            | 2.0       | nd       |          | nd .           | 105%     | 107%     | 2%          |
| Bis (2-chloroethoxy) methane  | 2.0       | nd       |          | nd             |          |          |             |
| 2,4-Dichlorophenol            | 10.0      | nd       |          | nd             |          |          |             |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | nd             | 120%     | 114%     | 5%          |
| Naphthalene                   | 2.0       | nd       |          | nd             |          |          |             |
| 4-Chloroaniline               | 10.0      | nd       | •        | nd             |          |          |             |
| Hexachlorobutadiene           | 2.0       | nd       | 126%     | nd             |          |          |             |
| 4-Chloro-3-methylphenol       | 10.0      | nd       | 12070    | nd             | 79%      | 83%      | 5%          |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd             |          |          | -,,         |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd             |          |          |             |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd             |          |          |             |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd             |          | •        |             |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd             |          |          |             |
| • •                           | 2.0       | nd       |          | nd             |          |          |             |
| 2-Chloronaphthalene           |           |          |          | nd             |          | •        |             |
| 2-Nitroaniline                | 10.0      | nd       |          |                |          |          |             |
| 1,4-Dinitrobenzene            | 10.0      | nd       |          | . nd           |          |          |             |
| Dimethylphthalate             | 2.0       | nd       |          | nd             |          |          |             |
| Acenaphthylene                | . 0.2     | nd       |          | nd             |          |          |             |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          | nd             |          |          |             |
| 2,6-Dinitrotoluene            | 2.0       | nd       |          | nd             |          |          |             |
| 1,2-Dinitrobenzene            | 2.0       | nd       |          | nd             |          |          |             |
| Acenaphthene                  | 0.2       | nd       | 131%     | nd             | 99%      | 96%      | 3%          |
| 3-Nitroaniline                | 10.0      | nd       |          | nd             |          |          |             |
| Dibenzofuran                  | 2.0       | nd       |          | nd             |          |          |             |
| 2,4-Dinitrotoluene            | 2.0       | nd       |          | nd             | . 88%    | 89%      | 1%          |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd ·     |          | nd             |          |          |             |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |          | nd             |          |          |             |
| 2,4-Dinitrophenol             | 10.0      | nd       |          | . nd           |          |          |             |
| Fluorene                      | 0.2       | nd       |          | nd             |          |          |             |

# ESN NW BELLEVUE CHEMISTRY LABORATORY Tel:(425) 957-9872, Fax: (425) 957-9904

ESN Job Number:

S81208.2

Client:

WDFW

Client Job Name:

Starzman Lakes

#### Analytical Results

| 8270, μg/L                   |           | MTH BLK  | LCS      | Starzman Lakes | MS       | MSD      | RPD |
|------------------------------|-----------|----------|----------|----------------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water          | Water    | Water    |     |
| Date extracted               | Reporting | 12/10/08 | 12/10/08 | 12/10/08       | 12/10/08 | 12/10/08 |     |
| Date analyzed                | Limits    | 12/10/08 | 12/10/08 | 12/10/08       | 12/10/08 | 12/10/08 |     |
|                              |           |          |          |                |          |          |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd             |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd             |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |          | nd             |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd             |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 125%     | nd             | ,        |          |     |
| Azobenzene                   | 2.0       | nd       |          | nd             |          |          | •   |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd             |          |          |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd             |          |          | ,   |
| Pentachlorophenol            | 10.0      | nd       |          | nd             |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | nd ·           | •        |          |     |
| Anthracene                   | 0.2       | nd       |          | nd             |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd             |          |          |     |
| Di-n-butylphthalate          | 2.0       | - nd     |          | · nd           |          | • •      |     |
| Fluoranthene                 | 0.2       | nd       | 114%     | nd             |          |          |     |
| Pyrene                       | 0.2       | nd       |          | nd             | 90%      | 95%      | 5%  |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd             |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd             |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd             |          |          |     |
| Chrysene                     | 0.2       | nd       |          | nd             |          |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd             |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 86%      | nd             |          |          |     |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd             | •        |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd             |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 96%      | nd             |          |          |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd             |          | •        |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd             |          |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd             |          |          |     |
|                              | •         |          |          |                |          |          |     |
| Surrogate recoveries         | ·         | ·        |          | •              |          |          |     |
| 2-Fluorophenol               |           | . 93%    | 114%     | 90%            | 91%      | 91%      |     |
| Phenol-d6                    |           | 94%      | 122%     | 96%            | 99%      | 94%      |     |
| Nitrobenzene-d5              |           | 111%     | 118%     | 117%           | 95%      | 89%      |     |
| 2-Fluorobiphenyl             |           | 87%      | 130%     | 89%            | 84%      | 83%      |     |
| 2,4,6-Tribromophenol         | •         | 65%      | 104%     | 129%           | 87%      | 83%      |     |
| 4-Terphenyl-d14              |           | 91%      | 96%      | 82%            | 80%      | 81%      |     |

#### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-135 % Phenol - d5: 10-135 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%